首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
化学   11篇
数学   1篇
物理学   1篇
  2023年   1篇
  2022年   4篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
排序方式: 共有13条查询结果,搜索用时 203 毫秒
1.
Three rings 2-hydroxypyridine liquid crystalline compounds have been prepared and fully characterized. The mesomorphic behavior of the prepared compounds has been investigated in terms of differential scanning calorimetry (DSC) and polarized optical microscopy (POM). Moreover, a comparative study between the prepared compounds and previously reported analogs has been discussed in terms of the orientation and position of the mesogenic core, in addition to the direction of the terminal alkyl chains. Furthermore, a detailed computational approach has been studied to illustrate the effect of geometrical and dimensional parameters on the type of the enhanced texture and the mesomorphic range and stability. The results of the DFT study revealed that the orientation of the mesogen could affect the mesomorphic behavior and this has been attributed in terms of the degree of the polarizability of the linking groups. This result has been confirmed by calculation of the net dipole moment and the molecular electrostatic potential that show how the mesogen orientation and position could impact the molecular charge separation. Finally, the effect of the pyridyl group has been also investigated in terms of the calculated aromaticity index and the π-π stacking.  相似文献   
2.
The limited potassium-ion intercalation capacity of graphite hampers development of potassium-ion batteries (PIB). Edge-nitrogen doping is an effective approach to enhance K-ion storage in carbonaceous materials. One shortcoming is the lack of precise control over producing the edge-nitrogen configuration. Here, a molecular-scale copolymer pyrolysis strategy is used to precisely control edge-nitrogen doping in carbonaceous materials. This process results in defect-rich, edge-nitrogen doped carbons (ENDC) with a high nitrogen-doping level (up to 10.5 at %) and a high edge-nitrogen ratio (87.6 %). The optimized ENDC exhibits a high reversible capacity of 423 mAh g−1, a high initial Coulombic efficiency of 65 %, superior rate capability, and long cycle life (93.8 % retention after three months). This strategy can be extended to design other edge-heteroatom-rich carbons through pyrolysis of copolymers for efficient storage of various mobile ions.  相似文献   
3.
Amyloid proteins are linked to the pathogenesis of several diseases including Alzheimer’s disease, but at the same time a range of functional amyloids are physiologically important in humans. Although the disease pathogenies have been associated with protein aggregation, the mechanisms and factors that lead to protein aggregation are not completely understood. Paradoxically, unique characteristics of amyloids provide new opportunities for engineering innovative materials with biomedical applications. In this review, we discuss not only outstanding advances in biomedical applications of amyloid peptides, but also the mechanism of amyloid aggregation, factors affecting the process, and core sequences driving the aggregation. We aim with this review to provide a useful manual for those who engineer amyloids for innovative medicine solutions.  相似文献   
4.
The COVID-19 pandemic has caused millions of fatalities since 2019. Despite the availability of vaccines for this disease, new strains are causing rapid ailment and are a continuous threat to vaccine efficacy. Here, molecular docking and simulations identify strong inhibitors of the allosteric site of the SARS-CoV-2 virus RNA dependent RNA polymerase (RdRp). More than one hundred different flavonoids were docked with the SARS-CoV-2 RdRp allosteric site through computational screening. The three top hits were Naringoside, Myricetin and Aureusidin 4,6-diglucoside. Simulation analyses confirmed that they are in constant contact during the simulation time course and have strong association with the enzyme’s allosteric site. Absorption, distribution, metabolism, excretion and toxicity (ADMET) data provided medicinal information of these top three hits. They had good human intestinal absorption (HIA) concentrations and were non-toxic. Due to high mutation rates in the active sites of the viral enzyme, these new allosteric site inhibitors offer opportunities to drug SARS-CoV-2 RdRp. These results provide new information for the design of novel allosteric inhibitors against SARS-CoV-2 RdRp.  相似文献   
5.
A class of optimal control problems for hyperbolic systems in two-dimensional space is considered. An approach is proposed to damp the undesirable vibrations in the structures by pointwise moving force actuators extending over the spatial region occupied by the structure. A class of performance indices is introduced that includes functions of the state variable, its first and second-order space derivatives and first-order time derivative evaluated at a preassigned terminal time, and a suitable penalty term involving the control forces. A maximum principle is given for such general scanning control problem that facilitates the determination of the unique optimal control. A solution method is developed for the active vibration control of plates of general shape. The implementation of the method is presented and the effectiveness of a single moving force actuator is investigated and compared to a single fixed force actuator by a specific numerical example.  相似文献   
6.
Surrogate fuels aim to reproduce real fuel combustion characteristics in order to enable predictive simulations and fuel/engine design. In this work, surrogate mixtures were formulated for three diesel fuels (Coryton Euro and Coryton US-2D certification grade and Saudi pump grade) and two jet fuels (POSF 4658 and POSF 4734) using the minimalist functional group (MFG) approach, a method recently developed and tested for gasoline fuels. The diesel and jet fuel surrogates were formulated by matching five important functional groups, while minimizing the surrogate components to two species. Another molecular parameter, called as branching index (BI), which denotes the degree of branching was also used as a matching criterion. The present works aims to test the ability of the MFG surrogate methodology for high molecular weight fuels (e.g., jet and diesel). 1H Nuclear Magnetic Resonance (NMR) spectroscopy was used to analyze the composition of the groups in diesel fuels, and those in jet fuels were evaluated using the molecular data obtained from published literature. The MFG surrogates were experimentally evaluated in an ignition quality tester (IQT), wherein ignition delay times (IDT) and derived cetane number (DCN) were measured. Physical properties, namely, average molecular weight (AMW) and density, and thermochemical properties, namely, heat of combustion and H/C ratio were also compared. The results show that the MFG surrogates were able to reproduce the combustion properties of the above fuels, and we demonstrate that fewer species in surrogates can be as effective as more complex surrogates. We conclude that the MFG approach can radically simplify the surrogate formulation process, significantly reduce the cost and time associated with the development of chemical kinetic models, and facilitate surrogate testing.  相似文献   
7.
Carbonaceous materials are promising anodes for practical potassium-ion batteries, but fail to meet the requirements for durability and high capacities at low potentials. Herein, we constructed a durable carbon anode for high-energy-density K-ion full cells by a preferential pyrolysis strategy. Utilizing S and N volatilization from a π–π stacked supermolecule, the preferential pyrolysis process introduces low-potential active sites of sp2 hybridized carbon and carbon vacancies, endowing a low-potential “vacancy-adsorption/intercalation” mechanism. The as-prepared carbon anode exhibits a high capacity of 384.2 mAh g−1 (90 % capacity locates below 1 V vs. K/K+), which contributes to a high energy density of 163 Wh kg−1 of K-ion full battery. Moreover, abundant vacancies of carbon alleviate volume variation, boosting the cycling stability over 14 000 cycles (8400 h). Our work provides a new synthesis approach for durable carbon anodes of K-ion full cells with high energy densities.  相似文献   
8.
Chrozophora tinctoria (Euphorbiaceae) has been used as an emetic, anthelminthic, and cathartic agent in traditional medicine. We used gas chromatography-mass spectrometry (GC-MS) to characterize the composition of ethyl acetate (EAC) and dichloromethane (DCMC) fractions from the whole Chrozophora tinctoria plant. EAC and DCMC fractions were evaluated for acetylcholinesterase (AChE) inhibitory activity and acute toxicity. Their effects on intestinal propulsive movement and spasmogenic activity of the gastrointestinal tract (GIT) muscle were also assessed. The compounds detected in both fractions were mostly fatty acids, with about seven compounds in EAC and 10 in DCMC. These included pharmacologically active compounds such as imipramine, used to treat depression, or hexadecanoic acid methyl ester, an antioxidant. Both EAC and DCMC fractions inhibited acetylcholinesterase (AChE) activity with IC50 values of 10 µg and 130 µg, respectively. Both the fractions were found to be toxic in a dose-dependent manner, inducing emesis at 0.5 g or higher and lethargy and mortality from 3–5 g upwards. Similarly, both of the fractions showed laxative activity in metronidazole- and loperamide-induced constipation models. EAC relaxed the intestinal muscle at a lower dose (1 mg/mL) than DCMC. Similarly, the EAC extract showed a significant relaxation effect (EC50 = 0.67 ± 0.15 mg/mL) on KCL-induced contraction in rabbit jejunum as compared to DCMC (EC50 = 5.04 ± 0.05 mg/kg). The present study strongly supports the folklore that this valuable plant is a cathartic agent. Further work is required to isolate and validate the bioactive compounds that act as diarrheal agents in Chrozophora tinctoria.  相似文献   
9.
Mushroom polysaccharides are active medicinal compounds that possess immune-modulatory and anticancer properties. Currently, the mushroom polysaccharides krestin, lentinan, and polysaccharopeptides are used as anticancer drugs. They are an unexplored source of natural products with huge potential in both the medicinal and nutraceutical industries. The northern parts of Pakistan have a rich biodiversity of mushrooms that grow during different seasons of the year. Here we selected an edible Morchella esculenta (true morels) of the Ascomycota group for polysaccharide isolation and characterization. Polysaccharopeptides and polysaccharides from this mushroom were isolated using the green chemistry, hot water treatment method. Fourier transform infrared spectroscopy revealed the sugar nature and possible beta-glucan type structure of these polysaccharides. Antioxidant assays showed that the deproteinized polysaccharides have moderate free radical scavenging activity. These isolated polysaccharides exhibited good acetylcholinesterase (AChE) and butyryl cholinesterase (BChE) inhibition activities. Therefore, these polysaccharides may be valuable for the treatment of Alzheimer’s and Parkinson’s diseases. Further bioassays are needed to discover the true potential of M. esculenta polysaccharides for medicinal purposes.  相似文献   
10.
This study details the differences in real-time hydration between pure tricalcium aluminate (cubic C(3)A or 3CaO·Al(2)O(3)) and Na-doped tricalcium aluminate (orthorhombic C(3)A or Na(2)Ca(8)Al(6)O(18)), in aqueous solutions containing sulfate ions. Pure phases were synthesized in the laboratory to develop an independent benchmark for the reactions, meaning that their reactions during hydration in a simulated early age cement pore solution (saturated with respect to gypsum and lime) were able to be isolated. Because the rate of this reaction is extremely rapid, most microscopy methods are not adequate to study the early phases of the reactions in the early stages. Here, a high-resolution full-field soft X-ray imaging technique operating in the X-ray water window, combined with solution analysis by (27)Al nuclear magnetic resonance (NMR) spectroscopy, was used to capture information regarding the mechanism of C(3)A hydration during the early stages. There are differences in the hydration mechanism between the two types of C(3)A, which are also dependent on the concentration of sulfate ions in the solution. The reactions with cubic C(3)A (pure) seem to be more influenced by higher concentrations of sulfate ions, forming smaller ettringite needles at a slower pace than the orthorhombic C(3)A (Na-doped) sample. The rate of release of aluminate species into the solution phase is also accelerated by Na doping.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号