首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学   6篇
物理学   1篇
  2019年   3篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2006年   1篇
排序方式: 共有7条查询结果,搜索用时 46 毫秒
1
1.
Applied Biochemistry and Biotechnology - A series of enantiopure isoxazolidines (3a–c) were synthesized by 1,3-dipolar cycloaddition between a (−)-menthone-derived nitrone and various...  相似文献   
2.
The oxidation of n-propanol and n-butanol to their corresponding aldehydes was monitored by the pervaporation technique. Mass transfer phenomenon that occurs in the pervaporation process was confirmed by the results of inverse gas chromatography. Polydimethylsiloxane (PDMS), a hydrophobic polymer widely employed as a membrane in pervaporation technique, was evaluated as a stationary phase in this study. The retention times of the different molecules probes (n-propanol, n-butanol, propionaldehyde, and butyraldehyde), molecules involved as reactants and products in the oxidation reaction, gave an insight into the extent of the interactions between each of these molecules and the stationary phase. The infinite dilution conditions allowed to measure the infinite dilution activity coefficient, gamma(infinity), and the specific retention volume, V(g)(0), and to estimate the Flory-Huggins parameter interactions, chi(12)(infinity). The magnitudes of these parameters threw some light on the permselectivity of the membranes in the pervaporation operation.  相似文献   
3.
Ruthenium, a fission product arising from the reprocessing of spent uranium oxide (UOX) fuel, crystallizes in the form of acicular RuO(2) particles in high-level waste containment glass matrices. These particles are responsible for significant modifications in the physicochemical behavior of the glass in the liquid state, and their formation mechanisms are a subject of investigation. The chemical reactions responsible for the crystallization of RuO(2) particles with acicular or polyhedral shape in simplified radioactive waste containment glass are described. In situ high-temperature environmental scanning electron microscopy (ESEM) is used to follow changes in morphology and composition of the ruthenium compounds formed by reactions at high temperature between a simplified RuO(2)-NaNO(3) precursor and a sodium borosilicate glass (SiO(2)-B(2)O(3)-Na(2)O). The key parameter in the formation of acicular or polyhedral RuO(2) crystals is the chemistry of the ruthenium compound under oxidized conditions (Ru(IV), Ru(V)). The precipitation of needle-shaped RuO(2) crystals in the melt might be associated with the formation of an intermediate Ru compound (Na(3)Ru(V)O(4)) before dissolution in the melt, allowing Ru concentration gradients. The formation of polyhedral crystals is the result of the direct incorporation of RuO(2) crystals in the melt followed by an Ostwald ripening mechanism.  相似文献   
4.
Blends composed of isotropic linear poly (n-butylacrylate) of molecular weight M w?=?112,000 g mol?1 and the commercial four-component nematic low molecular weight liquid crystal (LC) mixture E7 exhibit a strong shift of the single nematic–isotropic transition temperature T NI compared to that of the pure LCs, which was evidenced by using two complementary experimental techniques: differential scanning calorimetry (DSC) and high-performance liquid chromatography. The first one provides direct information about phase behaviour and variation of T NI of the polymer/LC blends, whereas the second one consists of analysing qualitatively and quantitatively the composition of millimetre-sized segregated LC domains in the two-phase region of the phase diagram.

In order to understand the origin of the unusual phase behaviour, several LC blends were prepared by modifying the concentration of the four single LC components that are present in the eutectic E7 mixture, following the results from the previous chromatographic analysis. These model blends were investigated by DSC measurements, showing that the variation, particularly of the terphenyl LC compound concentration, plays a determining role for the phase behaviour of the LC mixture and the shift of T NI.  相似文献   
5.
This work describes a simple synthesis of complexes of the type [M(C32H28N4)Cl2], where M = Ni (II), Cu (II) and Fe (II) and a novel complex of magnetite nanoparticle (Fe3O4NP) inside (INS) tetraaza macrocyclic Schiff base ligand (C32H28N4): [Fe3O4NP‐INS‐(C32H28N4)], which was prepared by using a novel co‐precipitation method of coordinated ferric ion (Fe3+) in the complex [Fe(C32H28N4)Cl2] under mild conditions. The synthesized compounds were characterized and compared with a various physic‐chemical techniques like: Fourier transform infrared (FT‐IR), ultraviolet–visible spectroscopic techniques (UV–Vis), 1‐dimensional (1D) 1H‐NMR, 13C‐NMR spectroscopic techniques, mass spectra, Powder X‐ray diffraction (PXRD), Vibrating sample magnetometer (VSM), Scanning electron microscopy (SEM), elemental analysis and molar conductance measurements. Furthermore, the highest saturation magnetization was 26.56 emu.g?1 obtained from [Fe3O4NP‐INS‐(C32H28N4)] (diameter of Fe3O4NPs~20.87 nm) that prove easy separation by an external magnetic field. In vitro screening of all the compounds against different species of bacteria and fungi shows that [Fe3O4NP‐INS‐(C32H28N4)] is effective against the tested strains as compared to the tetraaza macrocyclic ligand and selected complexes. The cytotoxic activity of the all compounds was also examined in 3 human tumor cell lines as U87, MDA‐MB‐231 and LS‐174. The complex [Fe3O4NP‐INS‐(C32H28N4)] shows moderate and strong cytotoxic activity against brain cancer, colon cancer and breast cancer (U87, MDA‐MB‐231 and LS‐174 respectively), without showing cytotoxicity towards peripheral blood mononucleocyte (PBMC) cells.  相似文献   
6.
The aim was to evaluate the susceptibility of blaESBL producing Enterobacteriaceae to Slovakian Thymus vulgaris essential oil (TVEO) alone and in combination with cefotaxime (CTX). TVEO composition was determined by gas chromatograph-mass spectrometer (GC/MS). Susceptibility to 21 antibiotics was determined by disc diffusion assay. Genes characterization for resistance to β-lactams was accomplished by polymerase chain reaction (PCR). The antibacterial activity was investigated by standard methods. The synergistic interaction was determined by checkerboard test. Thymol (34.5%), p-cymene (22.27%) and linalool (5.35%) were the major components present in the TVEO. The identified strains were multi-drug resistant (MDR). TVEO showed high activity against all MDR strains, including blaESBL producing isolates, with inhibition zones and MIC values in the range of 24–40 mm/10μL and 2.87–11.5 μg/mL, respectively. TVEO in combination with CTX showed a synergistic action against blaSHV-12 producing Escherichia coli (FICI 0.28) and an additive effect vs ESBL producing Enterobacter cloacae (FICI 0.987).  相似文献   
7.
A hybrid elastic wave method is applied to determine the anisotropic constants of Olive wood specimen considered as an orthotropic solid. The method is based on the measurements of the Lamb wave velocities as well as the bulk ultrasonic wave velocities. Electrostatic, air-coupled, ultrasonic transducers are used to generate and receive Lamb waves which are sensitive to material properties. The variation of phase velocity with frequency is measured for several modes propagating parallel and normal to the fiber direction along a thin Olivier wood plates. A numerical model based mainly on an optimization method is developed; it permits to recover seven out of nine elastic constants with an uncertainty of about 15%. The remaining two elastic constants are then obtained from bulk wave measurements. The experimental Lamb phase velocities are in good agreement with the calculated dispersion curves. The evaluation of Olive wood elastic properties has been performed in the low frequency range where the Lamb length wave is large in comparison with the heterogeneity extent. Within the interval errors, the obtained elastic tensor doesn’t reveal a large deviation from a uniaxial symmetry.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号