首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学   8篇
物理学   1篇
  2021年   1篇
  2020年   1篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2011年   2篇
排序方式: 共有9条查询结果,搜索用时 31 毫秒
1
1.
2.
3.
Journal of Sol-Gel Science and Technology - Nanocomposite of Mn2O3/Al2O3/SiO2 was prepared through an in situ sol–gel process, in which Mn2O3 nanocrystals were dispersed in the silica-alumina...  相似文献   
4.
Journal of Sol-Gel Science and Technology - In this study, Zinc Oxide (ZnO)–Cadmium Oxide (CdO) nanocomposite has been synthesized by reverse microemulsion method and used as adsorbent to...  相似文献   
5.
Synthesis, characterization, and in vitro toxicity evaluation of upconversion luminescence NaLuF4:Yb3+/Tm3+ nanoparticles (UCLNPs) are reported in the current study. Initially, the synthesized lanthanide trifluoroacetate (Ln(OOCCF3)3) precursor was used to fabricate NaLuF4 nanoparticles doped with Yb3+ and Tm3+ metal ions. The nanoparticles were coated with calcium carbonate (CaCO3) after removing the hydrophobic species on them to enhance their biocompatibility. The in vitro methylthiazolyldiphenyl-tetrazoliumbromide (MTT) test was used to evaluate the toxicity of synthesized NaLuF4:Yb3+/Tm3+ nanoparticles (NLF-5) on L929 mouse fibroblast cell lines. The transmission electron microscopy image showed that the particle size of NaLuF4:Yb3+/Tm3+ was 32 nm. The synthesized NLF-5 nanoparticles have both α-cubic and β-hexagonal crystalline structures that provided a superb near-infrared-to-near-infrared upconversion luminescence signal when excited at 980 nm. MTT test results show that the death of L929 fibroblast cells was observed only at concentrations above 250 μg/mL of NaLuF4:Yb3+/Tm3+ nanoparticles. In addition, with an increase in patrol time of 24, 48, and 72 hr, cell toxicity increased significantly, while the coated nanoparticles did not have any toxic effects. The synthesized nanoparticles could be used as a suitable material for medical applications due to their small particle size, high photoluminescence emission intensity, and low toxicity.  相似文献   
6.
7.
Research on Chemical Intermediates - CuAl2O4–Al2O3–SiO2 nanocomposites with different amounts of CuAl2O4 (40, 50, 60 and 70 wt. %) were synthesized by the sol–gel method and...  相似文献   
8.
Response surface methodology (RSM) has been used to optimize the critical parameters responsible for higher surface area of ceria nanopowder prepared by surfactant assisted precipitation method. A three-level central composite design (CCD) was used to optimize pH, CTAB/metal molar ratio and calcination temperature. A quadratic model between response and the independent parameters was developed and the response surface model was tested with analysis of variance (ANOVA). The optimum operating conditions determined were a pH value of 9.4, CTAB/metal molar ratio of 0.5 and calcination temperature of 266 °C. Under these optimal conditions maximum surface area of 158 m2/g has been achieved.  相似文献   
9.
Response surface methodology (RSM) based on central composite design (CCD) was successfully applied to the optimization and modeling of densification of nanocrystalline Al2O3 powder prepared by sol–gel method. The effects of three operating variables, sintering temperature, calcination temperature and milling time on the densification of nanocrystalline Al2O3 were systematically evaluated. A quadratic model for densification was proposed. Analysis of variance (ANOVA) indicated that the proposed quadratic model could be used to navigate the design space. The simulated values obtained from the statistical model were in conformity with the experimental results within an average error of ±1.5%. The optimum operating conditions for densification were found to be 1,579 °C of sintering temperature, 909 °C of calcination temperature and 117 min of milling time. The obtained density under the optimum conditions determined by RSM was 98.5%. The results confirmed that RSM based on central composite design was an accurate and reliable method to optimize the densification conditions of nanocrystalline Al2O3 powder.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号