首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
化学   5篇
数学   1篇
物理学   1篇
  2022年   1篇
  2017年   1篇
  2015年   1篇
  2013年   2篇
  2012年   1篇
  2010年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Cancer is a highly heterogenous disease that requires precise detection tools and active surveillance methods. Liquid biopsy assays provide an agnostic way to follow the complex trajectory of cancer, providing better patient stratification tools for optimized treatment. Here, we present the development of a low-volume liquid biopsy assay called cyc-DEP (cyclic immunofluorescent imaging on dielectrophoretic chip) to profile biomarkers collected on a dielectrophoretic microfluidic chip platform. To enable on-chip cyclic imaging, we optimized a fluorophore quenching method and sequential rounds of on-chip staining with fluorescently conjugated primary antibodies. cyc-DEP allows for the quantification of a multiplex array of proteins using 25 µl of a patient plasma sample. We utilized nanoparticles from a prostate adenocarcinoma (LNCaP) cell line and a panel of six target proteins to develop our proof-of-concept technique. We then used cyc-DEP to quantify blood plasma levels of target proteins from healthy individuals, low-grade and high-grade prostate cancer patients (n = 3 each) in order to demonstrate that our platform is suitable for liquid biopsy analysis in its present form. To ensure accurate quantification of signal intensities and comparisons between different samples, we incorporated a signal intensity normalization method (fluorescent beads) and a custom signal intensity quantification algorithm that account for the distribution of signal across hundreds of collection regions on each chip. Our technique enabled a threefold improvement in multiplicity for detecting proteins associated with fluid samples, opening doors for early detection, and active surveillance through quantification of a multiplex array of biomarkers from low-volume liquid biopsies.  相似文献   
2.
In this study, 4‐thiophenol modified glassy carbon electrode was prepared by the reduction of 4‐diazothiophenol tetrafluoroborate salt. Silver nanoparticles were attached to the thiophenol modified surface to prepare a thiophenol‐silver nanoparticle composite film. 4‐Aminothiopenol molecules were deposited by self‐assembling technique to form multi‐layered nanofilms of TP/SNP/PhNH2 on glassy carbon substrate. These surfaces were characterized by cyclic voltammetry, electrochemical impedance spectroscopy, X‐ray photoelectron spectroscopy, reflectance‐absorption infrared spectroscopy, and ellipsometry at each multilayer film growth process. Atomic force microscopic images of GC/TP/SNP/PhNH2 surfaces were also acquired. The characterization methods show that the amine group containing surface permits the subsequent modification by a variety of coupling reactions for the immobilization of more complex systems. An application of the electrode modification for the determination of uric acid with a significantly lower detection limit is described. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
3.
The goal of this study was to prepare novel glassy carbon electrode surfaces using two similar bis-diazonium salts, 3,8-benzo[c]cinnoline (3,8-BCC-BDAS) and 3,8-benzo[c]cinnoline 5-oxide (3,8-BCCNO-BDAS) at the glassy carbon (GC) surface. These diazonium salts were reduced electrochemically and covalently electrografted onto the glassy carbon electrode surface to form modified electrodes. Electrochemical reduction of 3,8-BCC-BDAS and 3,8-BCCNO-BDAS salts on the electrode surface yielded a compact and stable film. The existence of BCC moieties on the GC surface was characterized by X-ray photoelectron spectroscopy, reflectance-adsorption infrared spectroscopy, cyclic voltammetry, ellipsometry, and electrochemical impedance spectroscopy. The stability and working potential range of the novel modified electrodes were also studied. The possibility of analytical application of these novel surfaces for inorganic cations and especially selectivity to copper ions was investigated. 3,8-diaminobenzo[c]cinnoline (3,8-DABCC) and its 5-oxide derivative (3,8-DABCCNO) were synthesized from the reductive cyclization of 2,2′-dinitrobenzidine and prepared their bisdiazonium salts via the tetrazotization reactions of the diamines with NaNO2. The structures of 3,8-DABCC and 3,8-DABCCNO and their corresponding bisdiazonium salts are confirmed by spectral analysis.  相似文献   
4.
The effect of the potential cycles on the reflective IR signals of nitro‐groups in nanofilms was studied for the statistical characterization of nitrobenzene (NB) and nitroazobenzene (NAB)‐modified glassy carbon (GC) surfaces. Both NB and NAB nanofilms were obtained by the electrochemical reduction of the diazonium tetrafluoroborate salts in acetonitrile using cyclic voltammetry (CV). The modified surfaces were denoted as GC‐(NB)n and GC‐(NAB)n, respectively, where n indicates the number of CV cycles performed during modification. Reflective IR signals of the normalized NB and NAB nanofilms and GC were used for the quantitative evaluation of the effect of the potential cycles on the reflective IR signals of nitro‐groups in nanofilms. The detection and quantitative ‘reading’ of the influence of number of CV cycles were realized in the frame of a new error controllable approach that was applied for analysis of all available set of data. This approach includes in itself the following basic steps: (a) the procedure of the division (normalization) on the GC spectra, (b) the comparison of the smoothed spectra for their statistical proximity in the frame of the statistics of the fractional moments, (c) extraction of possible calibration parameters for possible calibration of the normalized spectra with respect to the number of CV cycles. These three basic steps are becoming effective for detection of the influence of some external factors. In our case it is important to detect the influence of the factor n characterizing CV cycles.  相似文献   
5.
This paper studies portfolio optimization problems in a market with partial information and price impact. We consider a large investor with an objective of expected utility maximization from terminal wealth. The drift of the underlying price process is modeled as a diffusion affected by a continuous-time Markov chain and the actions of the large investor. Using the stochastic filtering theory, we reduce the optimal control problem under partial information to the one with complete observation. For logarithmic and power utility cases we solve the utility maximization problem explicitly and we obtain optimal investment strategies in the feedback form. We compare the value functions to those for the case without price impact in Bäuerle and Rieder (IEEE Trans Autom Control 49(3):442–447, 2004) and Bäuerle and Rieder (J Appl Prob 362–378, 2005). It turns out that the investor would be better off due to the presence of a price impact both in complete-information and partial-information settings. Moreover, the presence of the price impact results in a shift, which depends on the distance to final time and on the state of the filter, on the optimal control strategy.  相似文献   
6.
An electrochemical biosensor was developed for the determination of Escherichia coli (E. coli) in water. For this purpose, silver‐gold core‐shell (Ag@Au) bioconjugates and anti‐E. coli modified PS‐microwells were designed in a sandwich‐type format in order to obtain higher sensitivity and selectivity. Ag@Au bimetallic nanoparticles were synthesized by co‐reduction method. The core‐shell formation was analyzed by using UV‐Vis spectroscopy and transmission electron microscopy. Biotin labeled anti‐E. coli antibodies were coupled with Ag@Au nanoparticles to form bioconjugates. The electrochemical immunosensor was prepared by immobilizing anti‐E. coli on polystyrene (PS)‐microwells via chemical bonding. These modified microwells were identified with X‐ray photoelectron spectroscopy and surface enhanced Raman spectroscopy. E. coli was sandwiched between Ag@Au bioconjugates and anti‐E. coli on PS‐microwells at different concentrations. The relationship between the E. coli concentration and stripping current of gold ions (Au3+) were investigated by square wave anodic stripping voltammetry at pencil graphite electrode. The proposed method can provide some advantages such as lower detection limit and shorter detection time. The electrochemical response for the immunosensor was linear with the concentration of the E. coli in the range of 101 and 105 cfu/mL with a limit of detection 3 cfu/mL. The procedure maintains good sensitivity and repeatability and also offers utility in the fields of environmental monitoring and clinical diagnosis.  相似文献   
7.
Present work aims to create a benzoylglycine (BG)-modified glassy carbon (GC) substrate exploiting the electroreduction of diazonium salts. Dopamine was used to confirm the attachment of benzoylglycine molecules onto the glassy carbon surface by observing the blockage of the electron transfer using cyclic voltammetry (CV). BG-modified GC surface (BG-GC) was also characterized by Raman spectroscopy and electrochemical impedance spectroscopy (EIS) techniques. The ellipsometric thickness of the BG film was measured as approximately 14 nm for seven CV cycles. The electrocatalytic effect of BG-GC electrode surface against dioxygen reduction was investigated. The catalytic effect for dioxygen reduction of the BG-GC surface was compared with that of 2-benzo[c]cinnoline, 2-benzo[c]cinnoline 6-oxide- and diethylene glycol bis(2-aminophenyl)ether-modified GC surfaces to clarify the mechanism of catalysis of the surfaces in terms of molecular structure.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号