首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   1篇
化学   23篇
力学   1篇
数学   4篇
物理学   9篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2005年   1篇
  2004年   4篇
  2003年   1篇
  2002年   1篇
  1999年   2篇
  1998年   2篇
  1996年   1篇
  1995年   3篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1983年   1篇
排序方式: 共有37条查询结果,搜索用时 31 毫秒
1.
Trifluoromethanesulfonic (triflic) acid is an excellent catalyst for inducing overall 5-endo cyclisation of homoallylic sulfonamides [e.g. 4] to give pyrrolidines [e.g. 5]. In competitive experiments, pyrrolidines or homopiperidines are formed in preference to piperidines, even when the latter would be obtained by trapping a tertiary carbocation. Cationic cascades terminated by a sulfonamide group are viable for the efficient formation of polycyclic systems.  相似文献   
2.
3.
4.
5.
To measure the gold content of a catalyst accurately, neutron activation analysis (NAA) is one of the methods of choice. NAA is preferred for such heterogeneous catalysts because: (1) it requires minimal sample preparation; (2) NAA provides consistent and accurate results; and (3) in most cases results are obtained much quicker than competing methods. NAA is also used as a referee for the other elemental techniques when results do not fall within expected statistical uncertainties. However, at very high gold concentrations, applying NAA to determine the gold in a heterogeneous catalyst is more challenging than a routine NAA procedure. On the one hand, the neutron absorption cross section for gold is very high, resulting in significant self-shielding related errors. On the other hand, gold exhibits low energy resonance neutron absorptions. In this application the self-shielding minimization effort was handled more rigorously than the classic suppression of neutron flux within a specimen. This non-routine approach was used because: (1) for most applications, high accuracy, <3 % relative, is desired, (2) the low energy resonances of gold make its neutron reaction rate complex and (3) the TRIGA reactor flux profile used in this study contains both thermal and significant epithermal neutron fluxes. Accuracy and precision, using this new approach, are expected to improve from 15 % to better than 3 % relative uncertainty. This has been accomplished through a rigorous assessment of the observed effects of low energy resonance on the neutron flux spectral shape within the sample and designing an experiment to minimize the effects.  相似文献   
6.
7.
A novel four- channel multiplexed electrospray liquid chromatography interface is described. This device has been used to analyse both single components and mixtures by liquid chromatography/mass spectrometry (LC/MS) as well as synthetic samples prepared by automated procedures. These data provided unambiguous molecular weight assignments to both major components and synthetic by-products in these samples. In this work particular attention has also been paid to the elimination of interchannel crosstalk. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   
8.
9.
We derive microscopically precise identities for the geometry of small clusters in the equilibrium states of the two-dimensional Ising model with emphasis on near-critical phenomena.  相似文献   
10.

Background  

The efficient conversion of ammonia, a potent neurotoxin, into non-toxic metabolites was an essential adaptation that allowed animals to move from the aquatic to terrestrial biosphere. The urea cycle converts ammonia into urea in mammals, amphibians, turtles, snails, worms and many aquatic animals and requires N-acetylglutamate (NAG), an essential allosteric activator of carbamylphosphate synthetase I (CPSI) in mammals and amphibians, and carbamylphosphate synthetase III (CPSIII) in fish and invertebrates. NAG-dependent CPSI and CPSIII catalyze the formation of carbamylphosphate in the first and rate limiting step of ureagenesis. NAG is produced enzymatically by N-acetylglutamate synthase (NAGS), which is also found in bacteria and plants as the first enzyme of arginine biosynthesis. Arginine is an allosteric inhibitor of microbial and plant NAGS, and allosteric activator of mammalian NAGS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号