首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学   5篇
力学   1篇
物理学   1篇
  2021年   1篇
  2020年   1篇
  2012年   2篇
  1999年   2篇
  1983年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Reversible addition–fragmentation chain transfer (RAFT) dispersion polymerisation of methyl methacrylate (MMA) is performed in supercritical carbon dioxide (scCO2) with 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid (DDMAT) present as chain transfer agent (CTA) and surprisingly shows good control over PMMA molecular weight. Kinetic studies of the polymerisation in scCO2 also confirm these data. By contrast, only poor control of MMA polymerisation is obtained in toluene solution, as would be expected for this CTA which is better suited for acrylates. In this regard, we select a range of CTAs and use them to determine the parameters that must be considered for good control in dispersion polymerisation in scCO2. A thorough investigation of the nucleation stage during the dispersion polymerisation reveals an unexpected “in situ two-stage” mechanism that strongly determines how the CTA works. Finally, using a novel computational solvation model, we identify a correlation between polymerisation control and degree of solubility of the CTAs. All of this ultimately gives rise to a simple, elegant and counterintuitive guideline to select the best CTA for RAFT dispersion polymerisation in scCO2.

RAFT dispersion polymerisation of methyl methacrylate is performed in scCO2 with 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid (DDMAT) present as chain transfer agent (CTA) and surprisingly shows good control over PMMA molecular weight.  相似文献   
2.
3.
Zero-valent palladium precatalysts containing rigid bidentate bis(arylimino)acenaphthene ligands (shown schematically) facilitate the highly stereoselective homogeneous catalytic hydrogenation of alkynes to (Z)-alkenes. Internal, terminal, aryl-substituted, and cyclic alkynes are suitable substrates, as are some enynes, which are chemoselectively hydrogenated to dienes. E=CO(2)Me; R(1), R(2)=4-OCH(3), 4-CH(3), 2,6-(CH(3))(2).  相似文献   
4.
The sensitivity of all ion trap mass spectrometry (ITMS) methods is dependent on the trapping efficiency of the instrument. For ITMS instruments utilizing external ion sources, such as laser desorption, trapping efficiency is known to depend on the phase and amplitude of the radio frequency (RF) potential applied to the ring electrode at the time of ion introduction. It is remarkable that, in a considerable body of literature, no consensus exists regarding the effects of these parameters on the efficacy of trapping externally generated ions. In this paper, a summary of the literature is presented in order to highlight significant discrepancies. New laser desorption ion trap mass spectrometry (LD-ITMS) data are also presented, from which conclusions are drawn in our effort to clarify some of the confusion. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   
5.
The design, fabrication, and testing of photoelastic models of double-lap, multiple-pin connectors are discussed. Interest is in the stresses in the inner laps. These stresses are determined by constructing models with photoelastic inner laps and transparent-acrylic outer laps. The connectors have two pins, in tandem, parallel to the load direction. A photoelastic-isotropic point is shown to permit the evaluation of load sharing between the two pins. A numerical scheme, utilizing the isochromatic- and isoclinic-photoelastic data and a finite-difference representation of the planestress equilibrium equations, is used to compute the stresses around the two pins. Representative stress distributions and stress-concentration factors are shown.  相似文献   
6.
7.
Vibrational analysis within a partial Hessian framework can successfully describe the vibrational properties of a variety of systems where the vibrational modes of interest are localized within a specific region of the system. We have developed a new approach to calculating anharmonic frequencies based on vibrational frequencies and normal modes obtained from a partial Hessian analysis using second-order vibrational perturbation theory and the transition optimized shifted Hermite method. This allows anharmonic frequencies for vibrational modes that are spatially localized to be determined at a significantly reduced computational cost. Several molecular systems are examined in order to demonstrate the effectiveness of this method including organic molecules adsorbed on the Si(100)-2×1 surface, model peptides in solution, and the C-H stretching region of polycyclic aromatic hydrocarbons. Overall, for a range of systems, anharmonic frequencies calculated using the partial Hessian approach are found to be in close agreement with the results obtained using full anharmonic calculations while providing a significant reduction in computational cost.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号