首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   6篇
化学   59篇
物理学   18篇
  2021年   1篇
  2019年   3篇
  2018年   1篇
  2015年   5篇
  2013年   2篇
  2012年   6篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   9篇
  2007年   8篇
  2006年   7篇
  2005年   8篇
  2004年   3篇
  2003年   1篇
  1996年   2篇
  1994年   3篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1987年   1篇
  1986年   1篇
排序方式: 共有77条查询结果,搜索用时 15 毫秒
1.
2.
3.
The lithium salts of the chalcogenocarbonyl dianions [(E)C(PPh2S)2]2? (E=S ( 4 b ), Se ( 4 c )) were produced through the reactions between Li2[C(PPh2S)2] and elemental chalcogens in the presence of tetramethylethylenediamine (TMEDA). The solid‐state structure of {[Li(TMEDA)]2[(Se)C(PPh2S)2]}—[{Li(TMEDA)}2 4 c ]—was shown to be bicyclic with the Li+ cations bis‐S,Se‐chelated by the dianionic ligand. One‐electron oxidation of the dianions 4 b and 4 c with iodine afforded the diamagnetic complexes {[Li(TMEDA)]2[(SPh2P)2CEEC(PPh2S)2]} ([Li(TMEDA)]2 7 b (E=S), [Li(TMEDA)]2 7 c (E=Se)), which are formally dimers of the radical anions [(E)C(PPh2S)2]? . (E=S ( 5 b ), Se ( 5 c )) with elongated central E? E bonds. Two‐electron oxidation of the selenium‐containing dianion 4 c with I2 yielded the LiI adduct of a neutral selone {[Li(TMEDA)][I(Se)C(PPh2S)2]}—[{LiI(TMEDA)} 6 c ]—whereas the analogous reaction with 4 b resulted in the formation of 7 b followed by protonation to give {[Li(TMEDA)][(SPh2P)2CSS(H)C(PPh2S)2]}—[Li(TMEDA)] 8 b . Attempts to identify the transient radicals 5 b and 5 c by EPR spectroscopy in conjunction with DFT calculations of the electronic structures of these paramagnetic species and their dimers are also described. The crystal structures of [{Li(TMEDA)}2 4 c ], [{LiI(TMEDA)} 6 c ] ? C7H8, [Li(TMEDA)]2 7 b? (CH2Cl2)0.33, [Li(THF)2]2 7 b , [Li(TMEDA)]2 7 c , [Li(TMEDA)] 8 b? (CH2Cl2)2 and [Li([12]crown‐4)2] 8 b were determined and salient structural features are discussed.  相似文献   
4.
The nature of metal-metal bonding in group 13 dimetallenes REER (E = Al, Ga, In, Tl; R = H, Me, (t)Bu, Ph) was investigated by use of quantum chemical methods that include HF, second order M?ller-Plesset perturbation theory (MP2), coupled cluster (CCSD(T)), complete active space with (CASPT2) and without (CAS) second order perturbation theory, and two density functionals, namely, B3LYP and M06-2X. The results show that the metal-metal interaction in group 13 dimetallenes stems almost exclusively from static and dynamic electron correlation effects: both dialuminenes and digallenes have an important singlet diradical component in their wave function, whereas the bonding in the heavier diindenes and, in particular, dithallenes is dominated by closed shell metallophilic interactions. The reported calculations represent a systematic attempt to determine the metal and ligand dependent bonding changes in these systems.  相似文献   
5.
A Ni0‐NCN pincer complex featuring a six‐membered N‐heterocyclic carbene (NHC) central platform and amidine pendant arms was synthesized by deprotonation of its NiII precursor. It retained chloride in the square‐planar coordination sphere of nickel and was expected to be highly susceptible to oxidative addition reactions. The Ni0 complex rapidly activated ammonia at room temperature, in a ligand‐assisted process where the carbene carbon atom played the unprecedented role of proton acceptor. For the first time, the coordinated (ammine) and activated (amido) species were observed together in solution, in a solvent‐dependent equilibrium. A structural analysis of the Ni complexes provided insight into the highly unusual, non‐innocent behavior of the NHC ligand.  相似文献   
6.
The Feynman path integral Monte Carlo approach has been coupled to the gauge including atomic orbital formalism in order to analyse the absolute magnetic shieldings of the benzene nuclei under the conditions of thermal equilibrium. The Hamiltonian employed in the derivation of ensemble averaged NMR quantities is of the Hartree-Fock type. The basis set used is of 6–31G quality. The spatial delocalization of the atoms leads to a deshielding of both types of benzene nuclei relative to the shieldings experienced at the minimum of the potential energy surface. This deshielding has to be traced back to bond length elongations in thermal equilibrium. The influence of the nuclear fluctuations on the NMR parameters of benzene is quantum driven up to temperatures of 400 K; classical fluctuations are of minor importance in this low-temperature window.  相似文献   
7.
The electronic structures and the spin density distributions of the paramagnetic gallium 1,4-diaza(1,3)butadiene (DAB) model systems [((t)Bu-DAB)Ga(I)[Pn(SiH3)2]]* and the related dipnictogen species [((t)Bu-DAB)Ga[Pn(SiH3)2]2]* (Pn = N, P, As) were studied using density functional theory. The calculations demonstrate that all systems share a qualitatively similar electronic structure and are primarily ligand-centered pi-radicals. The calculated electron paramagnetic resonance (EPR) hyperfine coupling constants (HFCCs) for these model systems were optimized using iterative methods and were used to create accurate spectral simulations of the parent radicals [((t)Bu-DAB)Ga(I)[Pn(SiMe3)2]]* (Pn = N, P, or As) and [((t)Bu-DAB)Ga[Pn(SiMe3)2]2]* (Pn = P or As), the EPR spectra of which had not been simulated previously due to their complexity. Excellent agreement was observed between the calculated HFCCs and the optimum values, which can be considered the actual HFCCs for these systems. The computational results also revealed inconsistencies in the published EPR data of some related paramagnetic group 13-DAB complexes.  相似文献   
8.
9.
10.
The reaction of p-phenylenediamine with excess PCl 3 in the presence of pyridine affords p-C 6H 4[N(PCl 2) 2] 2 ( 1) in good yield. Fluorination of 1 with SbF 3 produces p-C 6H 4[N(PF 2) 2] 2 ( 2). The aminotetra(phosphonites) p-C 6H 4[N{P(OC 6H 4OMe- o) 2} 2] 2 ( 3) and p-C 6H 4[N{P(OMe) 2} 2] 2 ( 4) have been prepared by reacting 1 with appropriate amount of 2-(methoxy)phenol or methanol, respectively, in the presence of triethylamine. The reactions of 3 and 4 with H 2O 2, elemental sulfur, or selenium afforded the tetrachalcogenides, p-C 6H 4[N{P(O)(OC 6H 4OMe- o) 2} 2] 2 ( 5), p-C 6H 4[N{P(S)(OMe) 2} 2] 2 ( 6), and p-C 6H 4[N{P(Se)(OMe) 2} 2] 2 ( 7) in good yield. Reactions of 3 with [M(COD)Cl 2] (M = Pd or Pt) (COD = cycloocta-1,5-diene) resulted in the formation of the chelate complexes, [M 2Cl 4- p-C 6H 4{N{P(OC 6H 4OMe- o) 2} 2} 2] ( 8, M = Pd and 9, M = Pt). The reactions of 3 with 4 equiv of CuX (X = Br and I) produce the tetranuclear complexes, [Cu 4(mu 2-X) 4(NCCH 3) 4- p-C 6H 4{N(P(OC 6H 4OMe- o) 2) 2} 2] ( 10, X = Br; 11, X = I). The molecular structures of 1- 3, 6, 7, and 9- 11 are confirmed by single-crystal X-ray diffraction studies. The weak intermolecular P...P interactions observed in 1 leads to the formation of a 2D sheetlike structure, which is also examined by DFT calculations. The catalytic activity of the Pd(II) 8 has been investigated in Suzuki-Miyaura cross-coupling reactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号