首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   1篇
物理学   1篇
  2012年   1篇
  2011年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Li[Co0.1Ni0.15Li0.2Mn0.55]O2 was synthesized, as a cathode material with high capacity, by a simple combustion method followed by annealing at 800?°C. Li[Co0.1Ni0.15Li0.2Mn0.55]O2 cathode materials were coated with lithium-active Co3(PO4)2 to improve the electrochemical performance of rechargeable lithium batteries. Morphologies and physical properties of Li[Co0.1Ni0.15Li0.2Mn0.55]O2 before and after the Co3(PO4)2 coating were analyzed with a scanning electron microscope equipped with an energy dispersive X-ray spectroscope. Transmission electron microscopy, powder X-ray diffraction, and Brunauer?CEmmett?CTeller surface area analyses were also carried out. The electrochemical performances of Li[Co0.1Ni0.15Li0.2Mn0.55]O2 cathode material before and after Co3(PO4)2 coating were evaluated by galvanostatic charge?Cdischarge testing at different charge and discharge densities. The temperature dependence of the cathode material before and after Co3(PO4)2 coating was investigated at 0, 10, 20, 30, 40, and 50?°C at a rate of 0.1?C. Co3(PO4)2-Li[Co0.1Ni0.15Li0.2Mn0.55]O2 exhibited good electrochemical performance under high C-rate and experimental temperature conditions. The enhanced electrochemical performances were attributed to the formation of a lithium-active Co3(PO4)2-coating layer on Li[Co0.1Ni0.15Li0.2Mn0.55]O2.  相似文献   
2.
The incorporation of nano-crystalline semiconductors with novel kinds of ordered microstructure is a very important area of research in the field of dye sensitized solar cells. A sol–gel method involving hydrolysis of titanium isopropoxide was used to form TiO2 nanoparticles on the surface of SiO2 spheres. In this process, 1, 5, or 10 wt% of SnCl2.2H2O was added to the sol–gel solution. To prepare TiO2/SnO2 nanoparticles with a half hollow sphere structure, SiO2 was removed with NaOH solution. The crystal phase, crystal shape, and surface properties of the metal oxide nanocrystals were studied by x-ray diffraction and scanning electron microscopy. The photovoltaic performance of the TiO2/SnO2 nanoparticles with half hollow sphere structures was measured. The dye sensitized solar cell using nanoporous TiO2 as electrode materials exhibits an overall conversion efficiency of 7.36% with a light intensity of 100 mW/cm2. The short circuit photocurrent (Isc), open circuit photovoltage (Voc), and conversion efficiency (η) of these solar cells were improved over conventional materials.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号