首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   5篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
2.
3.
Thianthrene cation radical salts, Th(*)(+) X(-)(X(-) = a, ClO(4)(-); b, PF(6)(-); c, SbF(6)(-)), add to cycloalkenes (C(5)-C(8)) in acetonitrile (MeCN) to form 1,2-bis(5-thianthreniumyl)cycloalkane salts and 1,2-(5,10-thianthreniumdiyl)cycloalkane salts, most of which have now been isolated and characterized. These are called bis- (3, 6, 9, 12) and monoadducts (4, 7, 10, 13). The proportional amount of the monoadduct obtained in the initial stage of the reaction varied with the cycloalkene in the order C(6) < C(5) < C(7) < C(8). Thus, the ratio bis:mono for C(5) and C(7) was, respectively, about 80/20 and 50/50. In contrast, only about 5% of the C(6) monoadduct (7a) and none of 7b,c was obtained, while for C(8) none of the bisadducts 12a-c was found. Bisadducts 3 and 9 lost thianthrene (Th) slowly in MeCN solution and changed into monoadducts 4 and 10. A comparable change from 6a into 7a was not observed. The monoadducts, themselves, lost a proton slowly in dry MeCN and opened into 1-(5-thianthreniumyl)cycloalkenes (5, 8, 11, 14). With 3 and 9, particularly, it was possible to follow with NMR spectroscopy the succession of changes, for example, 3 to 4 to 5. The opening of a monoadduct was made faster by adding a small amount of water to the solution. The bisadducts of 4-methylcyclohexene (15a) and 1,5-cyclooctadiene (17a) were isolated and characterized. Although a small amount of monodduct (16a) of 4-methylcyclohexene was found with NMR spectroscopy, it could not be isolated. Bis- and monoadducts were obtained also in additions of Th(*)(+) ClO(4)(-) to acyclic alkenes, in relative amounts that, again, varied with the alkene. From cis-2-butene the dominant product was the bisadduct (18), while the monoaduct (19) was characterized with NMR spectroscopy but could not be isolated. In contrast, trans-3-hexene gave mainly the monoadduct (21), while the bis adduct (20) could not be isolated. With 4-methyl-cis-2-pentene, both bis- (22) and monoadduct (23) were isolated, the former being dominant. The conversion of 18 into 19 was characterized with NMR spectroscopy. In all cycloalkene bisadducts, the configurational relationship of the two thianthrenium groups was trans, while in the monoadducts, the bonds to the single thianthrene dication were (necessarily) cis. In both bis- and monoadducts of acyclic alkenes, the configuration of the alkene was retained. The mechanisms of addition with retention of configuration, of conversion of a bis- into a monoadduct, and of opening of a monoadduct are discussed. Products were identified with a combination of NMR spectroscopy, X-ray crystallography, elemental analysis, and (for cycloalkene adducts) reaction with thiophenoxide ion.  相似文献   
4.
Phenoxathiin cation radical perchlorate (PO.+ClO4(-)) added stereospecifically to cyclopentene, cyclohexene, cycloheptene, and 1,5-cyclooctadiene to give 1,2-bis(5-phenoxathiiniumyl)cycloalkane diperchlorates (4-7) in good yield. The diaxial configuration of the PO+ groups was confirmed with X-ray crystallography. Unlike additions of thianthrene cation radical perchlorate (Th.+ClO4(-)) to these cycloalkenes, no evidence for formation of monoadducts was found in the reactions of PO.+ClO4(-). This difference is discussed. Addition of Th.+ClO4(-) to five trans alkenes (2-butene, 2-pentene, 4-methyl-2-pentene, 3-octene, 5-decene) and four cis alkenes (2-pentene, 2-hexene, 2-heptene, 5-decene) gave in each case a mixture of mono- and bisadducts in which the configuration of the alkene was retained. Thus, cis alkenes gave erythro monoadducts and threo bisadducts, whereas trans alkenes gave threo monoadducts and erythro bisadducts. In these additions to alkenes, cis alkenes gave predominantly bisadducts, while trans alkenes (except for trans-2-butene) gave predominantly monoadducts. This difference is explained. 1,2-Bis(5-phenoxathiiniumyl)cycloalkanes (4-7) and 1,2-bis(5-thianthreniumyl)cycloalkanes underwent fast elimination reactions on activated alumina forming, respectively, 1-(5-phenoxathiiniumyl)cycloalkenes (8-11) and 1-(5-thianthreniumyl)cycloalkenes (12-16). Among adducts of Th.+ClO4(-) and alkenes, monoadducts underwent fast ring opening on alumina to give (5-thianthreniumyl)alkenes, while bisadducts underwent fast eliminations of H+ and thianthrene (Th) to give (5-thianthreniumyl)alkenes also. Ring opening of monoadducts was a stereospecific reaction in which the configuration of the original alkene was retained. Thus, erythro monoadducts (from cis alkenes) gave (E)-(5-thianthreniumyl)alkenes and threo monoadducts (from trans alkenes) gave (Z)-(5-thianthreniumyl)alkenes. Among bisadducts, elimination of a proton and Th occurred and was more complex, giving both (E)- and (Z)-(5-thianthreniumyl)alkenes. These results are explained. Configurations of adducts and (5-thianthreniumyl)alkenes were deduced with the aid of X-ray crystallography and (1)H and (13)C NMR spectroscopy. In the NMR spectra of (E)- and (Z)-(5-thianthreniumyl)alkenes, the alkenyl proton of Z isomers always appeared at a lower field (0.8-1.0 ppm) than that of E isomers.  相似文献   
5.
An aliphatic azo compound containing three azo groups (1) has been prepared by IF(5) oxidation of beta-azoamine 3. The thermolysis kinetics of this vicinal trisazoalkane were investigated above 155 degrees C, leading to a rate constant only 5.5 times faster than that of the simple model, azo-tert-butane. Because thermolysis to form seven stable products proceeds stepwise, the rate is hardly affected by the high exothermicity of the overall reaction (-93.4 kcal/mol). Oxidation of amine 3 also afforded a cyclic azimine 5 that underwent photolysis to yield a highly strained triaziridine 9 plus an unusual triazane 10, whose structures were elucidated by detailed NMR studies. On standing at ambient temperature, 9 reverted to 5 with a half-life of about an hour.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号