首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
化学   24篇
力学   1篇
数学   2篇
物理学   3篇
  2007年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1991年   1篇
  1986年   4篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1976年   3篇
  1975年   1篇
  1973年   2篇
  1972年   1篇
  1971年   4篇
  1970年   2篇
  1969年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有30条查询结果,搜索用时 46 毫秒
1.
2.
The mass spectra of 1,1-dimethyl-1-silacyclobutane (I—as reported by Cherniak et al.),6, 1,1-dimethyl-1-germacyclobutane (II), 1,1,2,2-tetramethyl-1,2-disilacyclopentane (III) and 1,1,2,2-tetramethyl-1,2-digermacyclopentane (IV) are compared and some correlations between electron-impact fragmentation and thermal decomposition are derived. The mass spectra of the germanium compounds with respect to the silicone compounds are enriched by light fragment ions and exhibit lower intensities of odd-electron ions. The composition of some ions and apparently of neutral fragments coincides with that of the unstable intermediates which are suggested in the thermal decomposition mechanism of some related compounds. The loss of C2H4 is more characteristic under electron-impact as well as in thermal decomposition of Si-compounds, while C3H6 is preferable eliminated by the Ge-compounds.  相似文献   
3.
4.
5.
6.
7.
8.
Ab initio and DFT thermochemical study of diradical mechanism of 2 + 2 cycloreversion of parent heterocyclobutanes and 1,3‐diheterocyclobutanes, cyclo‐(CH2CH2CH2X), and cyclo‐(CH2XCH2X), where X = NH, O, SiH2, PH, S, was undertaken by calculating closed‐shell singlet molecules at three levels of theory: MP4/6‐311G(d)//MP2/6‐31G(d)+ZPE, MP4/6‐311G(d,p)//MP2/6‐31G (d,p)+ZPE, and B3LYP/6‐311+G(d,p)+ZPE. The enthalpies of 2 + 2 cycloreversion decrease on going from group 14 to group 16 elements, being substantially higher for the second row elements. Normally endothermic 2 + 2 cycloreversion is predicted to be exothermic for 1,3‐diazetidine and 1,3‐dioxtane. Strain energies of the four‐membered rings were calculated via the appropriate homodesmic reactions. The enthalpies of ring opening via the every possible one‐bond homolysis that results in the formation of the corresponding 1,4‐diradical were found by subtracting the strain energies from the central bond dissociation energies of the heterobutanes CH3CH2—CH2XH, CH3CH2—XCH3, and HXCH2—XCH3. The latter energies were determined via the enthalpies of the appropriate dehydrocondensation reactions, using C—H and X—H bond energies in CH3XH calculated at G2 level of theory. Except 1,3‐disiletane, in which ring‐opening enthalpy attains 69.7 kcal/mol, the enthalpies of the most economical ring openings do not exceed 60.7 kcal/mol. The 1,4‐diradical decomposition enthalpies found as differences between 2 + 2 cycloreversion and ring‐opening enthalpies were negative, the least exothermicity was calculated for ⋅ CH2SiH2CH2CH2. The only exception was 1,3‐disiletane, which being diradical, CH2SiH2CH2SiH2, decomposed endothermically. Since decomposition of the diradical containing two silicon atoms required extra energy, raising the enthalpy of the overall reaction to 78.9 kcal/mol, 1,3‐disiletane was predicted to be highly resisting to 2 + 2 cycloreversion. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:704–720, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20377  相似文献   
9.
10.
To evaluate the effect of geminal substitution at silicon on 1-sila- and 1,3-disilacyclobutanes' strain energies, their 2+2 cycloreversion enthalpies, and Si=C pi-bond energies in silenes, an ab initio MO study of silenes, R2Si=CH2 (1), 1-silacyclobutanes, cyclo-R2Si(CH2)3 (2), and 1,3-disilacyclobutanes, cyclo-(R2SiCH2)2 (3), was performed using the level of theory denoted MP4/TZ(d)//MP2/6-31G(d) (TZ means the 6-311G(d) basis set for elements of the second period and hydrogen, and the McLean-Chandler (12s,9p)/[6s,5p](d) basis set for the third period elements). In the series R = H, CH3, SiH3, CH3O, NH2, Cl, F, the growth of the reaction enthalpies and strain energies is proportional to the substituents' electronegativities. 2+2 cycloreversion of 2 is endothermic by 40.6-63.1 kcal/mol, whereas that of 3 is endothermic by 72.7-114.2 kcal/mol. On going from a silicon to a fluorine substituent at the sp2-hybridized silicon atom, the pi-bond energy in 1 weakens by 11.3 kcal/mol, and the Si=C bond length shortens by 0.053 A. The effect of substituents' electronegativities at the double-bonded silicon atom in silenes is formulated as follows: the higher electronegativity, the shorter and the weaker the Si=C pi-bond. The latter is rationalized in terms of more strained geometry resulting from the energetic cost for planarizing the R2SiC moiety. The enthalpies of the ring-opening reaction are 68.0-80.1 kcal/mol (a cleavage of the Si-C bond in 3), 65.0-76.4 kcal/mol (a cleavage of the Si-C bond in 2), and 58.0-64.9 kcal/mol (a cleavage of the C-C bond in 2). The pronounced difference in the enthalpies of 2+2 cycloreversion of 1-sila- and 1,3-disilacyclobutanes is mainly due to the difference in the enthalpies of diradicals' decomposition. The decomposition of diradicals resulting from a cleavage of C-C and Si-C bonds in 2 is exothermic by 24.3-3.3 kcal/mol (apart from the difluoro derivative which is endothermic by 5.1 kcal/mol) and 27.0-13.3 kcal/mol, respectively. The decomposition of a 1,4-diradical resulting from ring opening of 3, apart from the disilyl derivative, is the endothermic process for which the enthalpy varies from 10.6 to 40.4 kcal/mol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号