首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   4篇
  国内免费   1篇
化学   15篇
力学   2篇
数学   2篇
物理学   20篇
  2022年   2篇
  2021年   1篇
  2016年   3篇
  2015年   2篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2002年   6篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1996年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1989年   2篇
  1987年   1篇
  1980年   1篇
  1957年   1篇
排序方式: 共有39条查询结果,搜索用时 15 毫秒
1.
2.
3.
Dynamic nuclear polarization (DNP) is a powerful method to enhance the sensitivity of solid-state magnetic nuclear resonance (ssNMR) spectroscopy. However, its biomolecular applications at high magnetic fields (preferably>14 T) have so far been limited by the intrinsically low efficiency of polarizing agents and sample preparation aspects. Herein, we report a new class of trityl-nitroxide biradicals, dubbed SNAPols that combine high DNP efficiency with greatly enhanced hydrophilicity. SNAPol-1, the best compound in the series, shows DNP enhancement factors at 18.8 T of more than 100 in small molecules and globular proteins and also exhibits strong DNP enhancements in membrane proteins and cellular preparations. By integrating optimal sensitivity and high resolution, we expect widespread applications of this new polarizing agent in high-field DNP/ssNMR spectroscopy, especially for complex biomolecules.  相似文献   
4.
The dependency of the critical Marangoni number on the geometrical aspect ratio of the floating half zone is essential to predict the onset of oscillatory thermocapillary convection.The experimental studies in the microgravity conditions on floating half zones of several centimeters in diameter have predicted that the critical Marangoni number increases with the increasing aspect ratio,and the terrestrial experimental studies have predicted the contradictory conclusion for floating half zones of several mil...  相似文献   
5.
The method of density matching between the solid and liquid phases is often adopted to effectively eliminate the effect of sedimentation of suspensions in studies on dynamic behaviour of a colloidal system. However, the associated changes in the solvent composition may bring side effects to the properties investigated and therefore might lead to a faulty conclusion if the relevant correction is not made. To illustrate the importance of this side effect, we present an example of the sedimentation influence on the coagulation rate of suspensions of 2μm (diameter) polystyrene. The liquid mixtures, in the proper proportions of water (H2O), deuterium oxide (D2O) and methanol (MeOH) as the liquid phase, density-matched and unmatched experiments are performed. Besides the influence of viscosity, the presence of methanol in solvent media, used to enhance the sedimentation effect, causes significant changes (reduction) in rapid coagulation rates compared to that in pure water. Without the relevant corrections for those non-gravitational factors it seems that gravitational sedimentation would retard the coagulation. The magnitude of the contribution from the non-gravitational factor is quantitatively determined, making the relevant correction possible. After necessary the influence of the sedimentation on coagulation rates at corrections for all factors, our experiments show that the initial stage of the coagulation is not observable.  相似文献   
6.
7.
8.
The Group 18 elements (noble gases) were the last ones in the periodic system to have not been encountered in perovskite structures. We herein report the synthesis of a new group of double perovskites KM(XeNaO6) (M=Ca, Sr, Ba) containing framework‐forming xenon. The structures of the new compounds, like other double perovskites, are built up of the alternating sequence of corner‐sharing (XeO6) and (NaO6) octahedra arranged in a three‐dimensional rocksalt order. The fact that xenon can be incorporated into the perovskite structure provides new insights into the problem of Xe depletion in the atmosphere. Since octahedrally coordinated XeVIII and SiIV exhibit close values of ionic radii (0.48 and 0.40 Å, respectively), one could assume that XeVIII can be incorporated into hyperbaric frameworks such as MgSiO3 perovskite. The ability of Xe to form stable inorganic frameworks can further extend the rich and still enigmatic chemistry of this noble gas.  相似文献   
9.
(1)H and variable-temperature (15)N NMR techniques have been used to study the effect of the gradual alumination of SBA-15 on the structure and adsorption properties of this mesoporous material. The interpretation of experimental spectra suggests that aluminum chlorhydrol most effectively reacts with silica surfaces in the confinement of the cavities of rough mesopore walls, instead of forming a homogeneous aluminum film. This first leads to a gradual filling of the cavities and finally results in aluminum islands on the inner surfaces of mesopores. In the sample with a Si/Al atomic ratio of 4.1, up to half of the inner surface area of the mesopores is covered with aluminum. The alumination produces Br?nsted acid sites attributed to silanol groups interacting with aluminum but does not affect the proton-donating ability of isolated silanol groups. At high Si/Al ratios, the surface contains only one type of Lewis site attributed to tetracoordinated aluminum. At lower Si/Al ratios, Lewis acid sites with a lower electron-accepting ability appear, as attributed to pentacoordinated aluminum. The numerical values of the surface densities of all chemically active sites have been estimated after annealing at 420 and 700 K. We were surprised to observe that gaseous nitrogen can occupy Lewis acid sites and hinder the interaction of the aluminum with any other electron donor. As a result, aluminated surfaces saturated with nitrogen do not exhibit any Br?nsted or Lewis acidity. At room temperature, it takes days before pyridine replaces nitrogen at the Lewis acid sites.  相似文献   
10.
We discuss the notion of spin squeezing considering two mutually exclusive classes of spin-s states, namely, oriented and non-oriented states. Our analysis shows that the oriented states are not squeezed while non-oriented states exhibit squeezing. We also present a new scheme for construction of spin-s states using 2s spinors oriented along different axes. Taking the case of s=1, we show that the ‘non-oriented’ nature and hence squeezing arise from the intrinsic quantum correlations that exist among the spinors in the coupled state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号