首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   0篇
化学   61篇
力学   1篇
数学   2篇
物理学   10篇
  2013年   1篇
  2012年   3篇
  2011年   5篇
  2010年   1篇
  2009年   4篇
  2008年   5篇
  2007年   1篇
  2006年   3篇
  2005年   4篇
  2004年   3篇
  2003年   5篇
  2002年   5篇
  2001年   7篇
  2000年   8篇
  1999年   5篇
  1998年   3篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1978年   1篇
  1977年   1篇
  1970年   1篇
排序方式: 共有74条查询结果,搜索用时 93 毫秒
1.
2.
The infrared spectra (3500–50 cm−1) of the gas and solid and the Raman spectra (3500–50 cm−1) of the liquid and solid have been recorded for 2-hexyne, CH3–CC–CH2CH2CH3. Variable temperature studies of the infrared spectrum (3500–400 cm−1) of 2-hexyne dissolved in liquid krypton have also been recorded. Utilizing four anti/gauche conformer pairs, the anti(trans) conformer is found to be the lower energy form with an enthalpy difference of 74±8 cm−1 (0.88±0.10 kJ/mol) determined from krypton solutions over the temperature range −105 to −150 °C. At room temperature it is estimated that there is 42% of the anti conformer present. Equilibrium geometries and energies of the two conformers have been determined by ab initio (HF and MP2) and hybrid DFT (B3LYP) methods using a number of basis sets. Only the HF and DFT methods predict the anti conformer as the more stable form as found experimentally. A vibrational assignment is proposed based on the force constants, relative intensities, depolarization ratios from the ab initio and DFT calculations and on rotational band contours obtained using the calculated equilibrium geometries. From calculated energies it is shown that the CH3 group exhibits almost completely free rotation which is in agreement with the observation of sub-band structure for the degenerate methyl vibrations from which values of the Coriolis coupling constants, ζ, have been determined. The results are compared to similar properties of some corresponding molecules.  相似文献   
3.
The infrared (3200-40 cm(-1)) spectra of gaseous and solid 1,1-dicyclopropylethene, (c-C3H5)2C=CH2, along with the Raman (3200-40 cm(-1)) spectra of liquid and solid phases, have been recorded. The major trans-gauche (C=C bond trans to one ring with the other ring rotated about 60 degrees from the C=C bond, trivial C(1) symmetry) and gauche-gauche (the two three-membered rings rotated oppositely about 60 degrees from the C=C bond, C2 symmetry) rotamers have been confidently identified in the fluid phases, but no definitive spectroscopic evidence was found for the gauche-gauche' form (the two three-membered rings rotated to the same side about 60 degrees from the C=C bond, Cs symmetry), which is calculated to be present in no more than 6% at ambient temperature. Variable-temperature (-55 to -100 degrees C) studies of the infrared spectra of the sample dissolved in liquid xenon have been carried out. Utilizing six different combinations of pairs of bands from the C1 and C2 conformers, the average enthalpy difference between these two has been determined to be 146 +/- 30 cm(-1) (1.75 +/- 0.36 kJ x mol(-1)), with the C1 form more stable. Given statistical weights of 2:1:1 respectively for the C1, C2, and Cs forms, it is estimated that there are 75 +/- 2% C(1) and 19 +/- 1% C2 conformers present at ambient temperature. By utilizing predicted frequencies, infrared intensities, Raman activities, and band envelopes from scaled MP2(full)/6-31G(d) ab initio calculations, a complete vibrational assignment is made for the C1 form and a number of fundamentals of the C2 conformer have been identified. The structural parameters, dipole moments, and conformational stabilities have been obtained from ab initio calculations at the level of Hartree-Fock (RHF), the perturbation method to second order with full electron correlation (MP2(full)), and hybrid density functional theory (DFT) by the B3LYP method with a variety of basis sets. The predicted conformational stabilities from the MP2 calculations with relatively large basis sets are consistent with the experimental results. Structural parameters are estimated from the MP2(full)/6-311+G(d,p) predictions which are compared to the previously reported electron diffraction parameters. These experimental and theoretical results are compared to the corresponding quantities of some similar molecules.  相似文献   
4.
Ab initio calculations are reported for three of four possible conformers of 1,3-dichloropropane. The fourth conformer, with Cs symmetry, has a predicted enthalpy difference of more than 1500 cm(-1) from the most stable conformer from each calculation regardless of the basis set used, so there is little chance of observing it. Thus, there is no evidence in the infrared or Raman spectrum of the presence of a fourth conformer. The order of stability given by the ab initio calculations is C2(GG)>C1(AG)>C2v(AA)>Cs(GG'), where A indicates the anti form for one of the CH2Cl groups and G indicates the gauche conformation for the other CH2Cl group relative to the plane of the carbon atoms. Almost every band observed can be confidently assigned to one or another of the conformers. Many observed bands proved to be of a composite nature, with several nearly coincident vibrations of different conformers contributing to the band contour. Nonetheless, a complete assignment of fundamentals is possible for the most stable C2 conformer, and 5 of the fundamentals of the C2v conformer and 13 those of the C1 conformer can be confidently assigned.  相似文献   
5.
The Raman (50 to 3200 cm–1) and infrared (50 to 3500 cm–1) spectra of chlorodimethylmethoxysilane, Cl(CH3)2SiOCH3, in the vapor and solid phases have been recorded. Raman spectra of the liquid including depolarization ratios have also been recorded. Optimized geometries and conformational stabilities have been obtained from ab initio calculations utilizing the RHF/3–21G* and RHF/6–31G* basis sets. The calculations from both of these basis sets indicated the gauche conformer to be significantly more stable than the trans conformer. Since the gauche has twice the multiplicity of the trans form it is unlikely that the trans conformer will be detected in the fluid phases at room temperature. This is supported by the fact that no infrared or Raman bands were found to vanish in the spectra of the crystalline solid. The vibrational frequencies have been calculated using appropriate scaling factors, and the vibrational spectra are interpreted in detail. The results have been compared with those obtained for some related molecules.Dedicated to Professor Dr. H. Kriegsmann on the occasion of his 70th birthdayFor part XX, see J Raman Spectrosc 26:in press (1995)Analytical R/D Department, Organic Products Division, Miles Inc., Bushy Park Plant. Charleston, SC 9411, USAChemistry Department, Mu'tah University, P.O.Box 7, Mu'tah-Karak, JordanDepartment of Chemistry, Moscow State University, Moscow, B-234, RussiaDepartment of Ceramic Engineering, Inha University, Nam-Ku, Incheon 160, KoreaDepartment of Chemistry, University of Oslo, P.O.Box 1033, 0315 Oslo, Norway  相似文献   
6.
Infrared and Raman spectra (3500-60 cm−1) of gas and/or liquid and solid 1-chloro-1-silacyclopentane (c-C4H8SiClH) have been recorded and the vibrational data indicate the presence of a single conformer with no symmetry which is consistent with the twisted form. Ab initio calculations with a variety of basis sets up to MP2(full)/aug-cc-pVTZ predict the envelope-axial and envelope-equatorial conformers are saddle points with nearly the same energies but much lower in energy than the planar conformer. Density functional theory calculations by the B3LYP method predicts slightly lower energies for the two envelope forms and considerably lower for the planar form. By utilizing the MP2(full)/6-31G(d) calculations the force constants, frequencies, infrared intensities, band contours, Raman activities, and depolarization values have been obtained to support the vibrational assignment. Estimated r0 structural parameters have been obtained from adjusted MP2(full)/6-311 + G(d, p) calculations. These experimental and theoretical results are compared to the corresponding quantities of some other five-membered rings.  相似文献   
7.
K Singh  GK Sandhu  BS Lark  SP Sud 《Pramana》2002,58(3):521-528
Molar extinction coefficients of some carbohydrates viz. l-arabinose (C5H10O5), d-glucose (C6H12O6), d-mannose (C6H12O6), d-galactose (C6H12O6), d(-) fructose (C6H12O6) and maltose (C12H24O12) in aqueous solutions have been determined at 81, 356, 511, 662, 1173 and 1332 keV by gamma ray transmission method in a narrow beam good geometry set-up. These coefficients have been found to depend upon the photon energy following a 4-parameter polynomial. These extinction coefficients for different sugars having the same molecular formula have same values varying within experimental uncertainty. Within concentration ranges studied, Beer-Lambert law is obeyed very well.  相似文献   
8.
9.
Variable temperature (?55 to ?105 °C) studies of the infrared spectra (4000–400 cm?1) of chlorocyclohexane (c-C6H11Cl) dissolved in liquefied xenon have been carried out. The infrared spectra of the gas and solid have also been recorded from 4000–100 cm?1. By analyzing six conformer pairs in the xenon solution, a standard enthalpy difference of 132 ± 13 cm?1 (1.58 ± 0.16 kJ/mol) was obtained with the equatorial conformer the more stable form. At ambient temperature, the abundance of the axial conformer is 34 ± 1%. The potential surface describing the conformational interchange has been determined and the Fourier coefficients were obtained. From MP2 ab initio calculations utilizing various basis sets with and without diffuse functions, the equatorial conformer is predicted to be more stable by 161 ± 18 cm?1 from the four largest basis set calculations, which is consistent with the experimental results. However, the average from the corresponding B3LYP density functional theory calculations is 274 ± 15 cm?1 which is certainly too large. By utilizing the previously reported microwave rotational constants for two isotopomers (35Cl, 37Cl) combined with the structural parameters predicted from the MP2(full)/6-311+G(d,p) calculations, adjusted r 0 structural parameters have been obtained. The determined heavy atom distances for the most stable chair-equatorial conformer in Å are: r 0(C1–C7,8) = 1.532(3); r 0(C7,8–C13,14) = 1.536(3); r 0(C4–C13,14) = 1.524(3); and r 0(C4–Cl6) = 1.802(5) and the angles in degrees: ∠C1C7,8C13,14 = 111.3(5)º; ∠Cl6C4C13,14 = 109.7(5)º with the two dihedral angles ∠C8C1C7C13 = 56.3(10)º and ∠C14C4C13C7 = 56.7(10)º. These parameters are in good agreement with those reported earlier from microwave and electron diffraction studies where the CC and CH distances were all assumed to be equal. A few of the previously reported vibrational assignments have been corrected. The results of these spectroscopic and theoretical studies are discussed and compared to the corresponding results for some similar molecules.  相似文献   
10.
The infrared spectra (4,000–30 cm?1) of the gas and solid and the Raman spectrum of liquid 2,2-difluoroethanol as well as variable temperature infrared spectra of krypton/xenon solutions have been recorded. From all these data, two (Gg and Tg) out of the five possible stable conformers have been confidently identified. The order of the stabilities has been predicted to be Gg > Tg > Gt > Gg′ > Tt by utilizing ab initio MP2 (full) and DFT (B3LYP method) calculations, where the first indicator (capital letter) is in reference to rotation around the C–C bond (G = gauche or T = trans) and the second one (small letter) refers to the orientation of the hydroxyl group. The percentage of the minor conformer Tg, at ambient temperature, is estimated to be (16 ± 3%). The optimized geometries, fundamental frequencies, infrared intensities, Raman activities, and depolarization values as well as centrifugal distortion constants have been obtained from ab initio and density functional theory calculations by utilizing a variety of basis sets as well as those with diffuse functions. By utilizing the previously reported microwave rotational constants for two isotopomers of the Gg conformer combined with ab initio MP2(full)/6-311+G(d,p) predicted structural values, adjusted r 0 parameters have been obtained. The determined heavy atom distances (Å) for the Gg conformer are: C1–C2 = 1.510(3), C2–F4 = 1.371(3), C2–F5 = 1.362(3), C1–O3 = 1.412(3) Å and angles ∠O3C1C2 = 111.0(5), ∠F4C2C1 = 108.8(5), ∠F5C2C1 = 109.8(5), τF4C2C1O3 = 63.5(5), τF5C2C1O3 = 179.1(5)°. Barriers of internal rotation have been obtained and vibrational assignments for the Gg and Tg conformers are given. The five predicted centrifugal distortion constants compared to the experimental values are in reasonable agreement except for ?K, which appears to be in error. The results are discussed and the structural parameters compared to the corresponding ones for 2-fluoroethanol and 2,2,2-trifluoroethanol where those for the latter molecule have been redetermined. The currently determined heavy atom parameters are quite different from the earlier assumed values, which led to poor values of the six adjusted parameters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号