首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   0篇
化学   18篇
晶体学   3篇
数学   1篇
物理学   24篇
  2020年   1篇
  2015年   1篇
  2011年   3篇
  2010年   2篇
  2008年   1篇
  2007年   4篇
  2006年   4篇
  2005年   1篇
  2004年   2篇
  2002年   2篇
  2000年   4篇
  1996年   1篇
  1995年   1篇
  1994年   5篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1979年   1篇
  1972年   1篇
  1934年   1篇
排序方式: 共有46条查询结果,搜索用时 15 毫秒
1.
Characterization of autocatalytic decomposition reactions is important for the safe handling and storage of energetic materials. Isothermal differential scanning calorimetry (DSC) has been widely used to detect autocatalytic decomposition of energetic materials. However, isothermal DSC tests are time consuming and the choice of experimental temperature is crucial. This paper shows that an automatic pressure tracking calorimeter (APTAC) can be a reliable and efficient screening tool for the identification of autocatalytic decomposition behavior of energetic materials. Hydroxylamine nitrate (HAN) is an important member of the hydroxylamine family. High concentrations of HAN are used as liquid propellants, and low concentrations of HAN are used primarily in the nuclear industry for decontamination of equipment. Because of its instability and autocatalytic decomposition behavior, HAN has been involved in several incidents.  相似文献   
2.
3.
4.
5.
6.
7.
We have studied for the first time the ability of a conducting polymer film, p(Tc3Py), representing a polypyrrole matrix with covalently attached titanocene dichloride (TcCl2) centers, to serve as an intermediator for the electron charge transport between the electrode and the reaction sites of solute reactants. The standard potential of the first of these electroactive species, ferrocene (Fc), is in the range where the polymer matrix is in its slightly oxidized state so that solute Fc species give a reversible response at the surface of this modified electrode. Another solute reactant, TcCl2, was studied in solutions in which it demonstrates a (quasi)reversible behavior at bare electrode surfaces, THF+TBAPF6 and AN+TEACl. The standard redox potential of this species belongs to the range of the electroactivity of immobilized TcCl2 centers (where the matrix is in its non-conducting state) so that the electron charge has to be transported via stepwise redox reactions between neighboring centers inside the film. The combination, solute reactant+film, results in a greater CV current compared to the response of the film in background solution or of the solute species at the bare electrode surface. This current for THF solution even exceeds the sum of separate currents for the film and the reactant. This finding is attributed to a catalytic effect of solute species as redox intermediators for the transformation of immobilized electroactive centers leading to a greater degree of the film reduction. The presence of solute TcCl2 species results in a much greater stability of immobilized centers (compared to the corresponding reactant-free solution), both in the course of CV with the passage of the range of their response and in experiments with the film holding at the potential within this range. This holding leads to an almost constant current related to the reaction of solute species at the film/solution interface. Our estimate shows that immobilized centers undergo above 10,000 reversible transformations (without an observed tendency to the degradation) to ensure the passage of this current. The conclusion has been drawn that immobilized TcCl2 centers are able to serve as sufficiently stable redox intermediators for the electron charge transport across the film, a prerequisite for the catalytic applications of such films.Abbreviations AN acetonitrile - THF tetrahydrofuran - Cp cyclopentadienyl, C5H5 - Cp cyclopentadienyl radical, C5H4 - Fc ferrocene, Cp2Fe - TcCl2 titanocene=bis(cyclopentadienyl)titanium dichloride, Cp2TiCl2 or its radical CpCpTiCl2 - PPy polypyrrole - Tc3Py titanocene-propyl-pyrrole, Cl2TiCpCp(CH2)3NC4H4 - p(Tc3Py) polymer obtained from Tc3Py - TBAPF6 tetrabuthylammonium hexafluorophosphate - TEACl tetraethylammonium chlorideDedicated to Zbigniew Galus on the occasion of his 70th birthday.  相似文献   
8.
Several magnetic and optical processes contribute to the magneto-optical response of nickel thin films after excitation by a femtosecond laser pulse. We achieved a first complete identification by explicitly measuring the time-resolved Kerr ellipticity and rotation, as well as its temperature and magnetic field dependence in epitaxially grown (111) and (001) oriented Cu/Ni/Cu wedges. The first hundreds of femtoseconds the response is dominated by state filling effects. The true demagnetization takes approximately 0.5-1 ps. At the longer (sub-ns) time scales the spins are found to precess in their anisotropy field. Simple and transparent models are introduced to substantiate our interpretation.  相似文献   
9.
10.
ZnO films prepared by one-step electrodeposition in the presence of dissolved eosin molecules present an internal nanoporous hybrid structure resulting from self-assembling processes occurring in solution between ZnO and eosin components. This study aims to better understand the underlying growth mechanism, which is still unexplained. The films were deposited by cathodic electrodeposition from an oxygen-saturated aqueous zinc chloride solution. The effects of the addition of 10 to 100 micromol.L(-1) eosin Y, as a sodium salt, on the growth rate and film properties, were systematically studied while all other parameters remained constant (concentrations of zinc salt and supporting electrolyte, applied potential of -1.4 V versus the mercurous sulfate electrode (MSE), temperature of 70 degrees C, rotating disk electrode at 300 rotations per min, and a glass-coated tin oxide electrode). It is shown that the addition of eosin provokes the formation of a nanoporous "cauliflower" structure whose nodule size and composition depend on the eosin concentration in the bath. The growth rate of the hybrid films increases markedly with the eosin concentration. The ZnO and eosin contents of the films are determined for each concentration by chemical analysis. Comparing with thickness determinations, it is shown that the total porosity increases up to 60-65% in volume fraction toward an eosin concentration of 100 micromol.L(-1). The empty pore volume fraction increases up to about 30% at an eosin concentration of about 20 micromol.L(-1) and then decreases. These correlations have been precisely established for the first time. It is shown that the global composition is fixed by the relative rate of deposition for zinc oxide, which is constant, and for the relative rate of eosin inclusion, which is proportional to the concentration in solution. This is explained on the basis of different steps in the growth mechanism, in particular, a diffusion effect limitation for both oxygen and eosin. This variation explains part of the increase in the growth rate. Another contribution is related by the structural effect on the nanoscale leading to the formation of the interpenetrated porous network. Competition between empty and eosin-filled parts of the pore network is evidenced. The formation of the porous network structure could be governed by a diffusion-limited aggregation mechanism. The system may represent a reference case of competing reactions in the electrochemical self-assembly of hybrid nanostructures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号