首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   6篇
  2005年   2篇
  2001年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Double-stranded (ds) calf thymus DNA (0.4 mM), excited by 20 ns laser pulses at 248 nm, was studied in deoxygenated aqueous solution at room temperature and pH 6.7 in the presence of a sodium salt (10 mM). The quantum yields for the formation of hydrated electrons (phi c-), single-strand breaks (phi ssb) and double-strand breaks (phi dsb) were determined for various laser pulse intensities (IL). phi c- and phi ssb increase linearly with increasing IL; however, phi ssb has a tendency to reach saturation at high IL (greater than 5 X 10(6) Wcm-2). The ratio phi ssb/phi c-, representing the number of ssb per radical cation, is about 0.08 at IL less than or equal to 5 X 10(6) Wcm-2. For comparison, the number of ssb per OH radical reacting with dsDNA is 0.22. On going from argon to N2O saturation, phi ssb and phi dsb become larger by factors of approximately 5 and 10-15, respectively. This enhancement is produced by attack on DNA bases by OH radicals generated by N2O-scavenging of the photoelectrons. While phi ssb is essentially independent of the dose (Etot), phi dsb depends linearly on Etot in both argon- and N2O-saturated solutions. The linear dependence of phi dsb implies a square dependence of the number of dsb on Etot. This portion of dsb formation is explained by the occurrence of two random ssb, generated within a critical distance (h) in opposite strands. For both argon- and N2O-saturated solutions h was found to be of the order of 40-70 phosphoric acid diester bonds. On addition of electron scavengers such as 2-chloroethanol (or N2O plus t-butanol), phi dsb is similar to that in neat, argon-saturated solutions. Thus, hydrated electrons are not involved in the chemical pathway leading to laser-pulse-induced dsb of DNA.  相似文献   
2.
Plasmid pTZ18R and calf thymus DNA in aerated neutral aqueous solution were irradiated by continuous 254 nm light. The quantum yields are φssb= 4.0 × 10-5 and φdsb= 1.4 × 10-6 for single- and double-strand break formation, respectively, φbr= 2.3 × 10-5 for base release, φdn= 2.1 × 10-3 for destruction of nucleotides, and φicl×φlds× 1 × 10-6 for interstrand cross-links and locally denatured sites, respectively. The presence of Tris-HCI/ ethylenediaminetetraacetic acid (10:1, pH 7.5) buffer strongly reduces φssb, The corresponding φ values, obtained on employing pulsed 193 nm laser irradiation, are much larger than those using λirr, = 254 nm. This is ascribed to a contribution of chemical reactions induced by photoionization, which is absent for 254 nm irradiation. The quantum yields of inactivation of plasmid DNA (λirr= 254 nm) were measured by transformation of the Escherichia coli strains AB1157 (wild type), φina(1157) = 1.6 × 10-4, AB1886 (uvr-), φina(1886) = 4.2 × 10-4, AB2463 (rec-), φina(2463) = 4.1 × 10-4 and AB2480 (uvr- rec-), φina(2480) = 3.1 × 10-3. The quantum yields of inactivation of plasmid DNA are compared with those of the four E. coli strains (denoted as chromosomal DNA inactivation) obtained from the literature. The results for E. coli strain AB2480 show that the chromosomal DNA and the plasmid DNA are both inactivated by a single pyrimidine photodimer per genome. With the E. coli strain AB2463 inactivation of plasmid and chromosomal DNA is the same for the same total damage per genome and is ~ 10 times smaller than for AB2480. This is explained by photodimer repair in chromosomal and plasmid DNA and by the absence of dsb repair in both cases. In the repair wild-type strain AB1157, inactivation of the plasmid DNA is roughly 100 times higher than that of the chromosomal DNA. We postulate that a portion of this difference is due to repair of dsb by the recA system in chromosomal DNA and that such repair does not take place in the plasmid DNA. The biological results from 254 nm irradiation are compared with those from 193 nm laser irradiation.  相似文献   
3.
In environmental engineering, adsorption and desorption are phenomena commonly referred to as responsible for pollution dispersion, retention, or retardation in soils, aquifers, and hydrologic systems. They are also used to remove organic pollutants from water or odorous compounds in gas deodorization. Most often, the characterization of the aqueous adsorption systems that are of engineering interest involves a narrow adsorbate concentration range and low values of the adsorbate concentration. The practice is to use the Freundlich equation that best fits most data and is considered sufficient to design adsorption contactors. However, no physical or chemical meaning can be associated with the values taken by the parameters. The present paper gives a new way of analyzing adsorption data, using an extension of the Freundlich equation and the Gaussian distribution function that makes it possible to associate parameter values of this extension with the adsorbate–adsorbent normal interaction energy, its heterogeneity, and to some extent the adsorbate–adsorbate lateral interaction energy.  相似文献   
4.
Release of bases form calf thymus DNA and three polynucleotides, induced by 20 ns excitation at 193 nm in aqueous solution at pH 7, was detected by HPLC. The quantum yields of formation of free bases (phi B) from double-stranded DNA (0.4 mM) are independent of intensity, indicating a one-quantum mechanism of N-glycosidic bond cleavage. The phi B values increase in the order guanine, thymine, adenine, cytosine, the latter being phi C approximately 7 x 10(-4) for double-stranded DNA under Ar and O2. The larger phi B values in N2O-saturated solution, e.g., phi C = 1.2 x 10(-3), are ascribed to additional base release via OH-adduct radicals. The phi B values of homopolynucleotides increase in the order poly(G), poly(A) and poly(C), e.g. phi C = 7 x 10(-3) under Ar, as do the efficiencies for base release per radical cation (eta B). A comparison of the eta B values with the efficiencies of single-strand breakage for poly(C), poly(A) and DNA shows a similar trend; both are markedly larger for pyrimidines than for purines. Pathways to undamaged bases, initiated from base radical cations, are proposed.  相似文献   
5.
The adsorption and desorption of salicylic acid from water solutions was investigated in HPLC microcolumns packed with activated carbon. The adsorption isotherm was obtained by the step-up frontal analysis method in a concentration range of 0-400 mg/L and was well fitted with the Langmuir equation. The investigation of rate aspects of salicylic acid adsorption was based on adsorption/desorption column experiments where different inlet concentrations of salicylic acid were applied in the adsorption phase and desorption was conducted with pure water. The concentration profiles of individual adsorption/desorption cycles data were fitted using several single-parameter models of the fixed-bed adsorption to assess the influence of different phenomena on the column behavior. It was found that the effects of axial dispersion and extraparticle mass transfer were negligible. A rate-determining factor of fixed-bed column dynamics was the kinetics of pore surface adsorption. A bimodal kinetic model reflecting the heterogeneous character of adsorbent pores was verified by a simultaneous fit of the column outlet concentration in four adsorption/desorption cycles. The fitted parameters were the fraction of mesopores and the adsorption rate constants in micropores and mesopores, respectively. It was shown that the former rate constant was an intrinsic one whereas the latter one was an apparent value due to the effects of pore blocking and diffusional hindrances in the micropores.  相似文献   
6.
Surface heterogeneity can be assessed by adsorption of different gaseous probes on solid materials. In the present study, four types of activated carbons were analyzed by classical N2 Brunauer-Emmett-Teller (BET) measurements and by low-pressure quasi-equilibrium volumetry (LPQEV) (Villieras, F.; Michot, L. J.; Bardot, F.; Cases, J. M.; Francois, M.; Rudzinski, W. Langmuir 1997, 13, 1104). Three methods of data evaluation were applied: (a) the Frenkel-Halsey-Hill method for estimation of fractal dimensions from BET data, (b) the Horwath-Kawazoe method to calculate the pore size distribution from LPQEV Ar and N2 adsorption isotherms, and (c) the derivative isotherm summation (DIS) method to describe the solid's surface heterogeneity by a concept of local derivative isotherms. Similar Ar and N2 adsorption energy distributions were obtained on all carbons, which indicates the presence of mainly nonpolar surfaces. When adsorption was described by the van der Waals equation, the ratio between the interaction energy of different energetic sites with argon and nitrogen was 0.88. This value corresponded very well with a slope obtained when Ar and N2 positions of local isotherms by the DIS method were compared. This relationship has an important impact because it enables one to constrain the modeling of local isotherms. This study, besides the surface information, showed large possibilities of the DIS method for the surface analysis not only in terms of solid heterogeneity characterization but also in terms of polarity assessment.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号