首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   6篇
  国内免费   2篇
化学   69篇
晶体学   1篇
力学   5篇
数学   9篇
物理学   14篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2015年   4篇
  2014年   6篇
  2012年   4篇
  2011年   4篇
  2010年   1篇
  2009年   3篇
  2008年   5篇
  2007年   5篇
  2006年   12篇
  2005年   5篇
  2004年   2篇
  2003年   3篇
  2002年   5篇
  2001年   1篇
  2000年   3篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1987年   1篇
  1984年   2篇
  1982年   1篇
  1979年   3篇
  1973年   2篇
  1970年   1篇
  1969年   1篇
排序方式: 共有98条查询结果,搜索用时 15 毫秒
1.
Measurements of ultrafast fluorescence anisotropy decay in model branched dendritic molecules of different symmetry are reported. These molecules contain the fundamental branching center units of larger dendrimer macromolecules with either three (C(3))- or four (T(d), tetrahedral)-fold symmetry. The anisotropy for a tetrahedral system is found to decay on a subpicosecond time scale (880 fs). This decay can be qualitatively explained by F?rster-type incoherent energy migration between chromophores. Alternatively, for a nitrogen-centered trimer system, the fluorescence anisotropy decay time (35 fs) is found to be much shorter than that of the tetramers, and the decay cannot be attributed to an incoherent hopping mechanism. In this case, a coherent interchromophore energy transport mechanism should be considered. The mechanism of the ultrafast energy migration process in the branched systems is interpreted by use of a phenomenological quantum mechanical model, which examines the two extreme cases of incoherent and coherent interactions.  相似文献   
2.
It has been suggested [F. H. Stillinger, J. Chem. Phys. 112, 9711 (2000)] that the convergence or divergence of M?ller-Plesset perturbation theory is determined by a critical point at a negative value of the perturbation parameter z at which an electron cluster dissociates from the nuclei. This conjecture is examined using configuration-interaction computations as a function of z and using a quadratic approximant analysis of the high-order perturbation series. Results are presented for the He, Ne, and Ar atoms and the hydrogen fluoride molecule. The original theoretical analysis used the true Hamiltonian without the approximation of a finite basis set. In practice, the singularity structure depends strongly on the choice of basis set. Standard basis sets cannot model dissociation to an electron cluster, but if the basis includes diffuse functions then it can model another critical point corresponding to complete dissociation of all the valence electrons. This point is farther from the origin of the z plane than is the critical point for the electron cluster, but it is still close enough to cause divergence of the perturbation series. For the hydrogen fluoride molecule a critical point is present even without diffuse functions. The basis functions centered on the H atom are far enough from the F atom to model the escape of electrons away from the fluorine end of the molecule. For the Ar atom a critical point for a one-electron ionization, which was not previously predicted, seems to be present at a positive value of the perturbation parameter. Implications of the existence of critical points for quantum-chemical applications are discussed.  相似文献   
3.
4.
The search for a model that can be used to describe the optical excitation migration in dendrimers has attracted great attention. In most cases in a dendrimer the conjugation is disrupted at the branching point; however, the excitation is delocalized. The strength of interactions among neighboring chromophores plays a key role in determining the energy migration mechanism. Conversely, having many identical chromophores held tightly together in an ordered macromolecular architecture will allow for many dipoles to be accessible for optical excitation. Therefore, the relative orientation of dipoles will be important in determining the mechanism of energy migration. Here we report the synthesis and photo-physical investigation of triarylamine-based dendrimers. Two important synthetic steps were utilized in the synthesis. First, we employed diphenylmethyl protective groups on the amines to assist in deprotective hydrogenolysis of the larger structures. Second, highly active catalysts for formation of both di- and triarylamines that are based on a 1:1 ratio of P(t-Bu)3 and Pd(dba)2 improved reaction yields of the C-N bond formation and decreased reaction times The energy migration processes in the dendrimers were investigated utilizing ultrafast time-resolved fluorescence anisotropy measurements. The fluorescence anisotropy of all three dendrimers decayed to a residual value within approximately 100 fs. This fluorescence anisotropy decay showed a general trend in decreasing with increasing dendrimer generation. The residual anisotropy value also showed a gradual decrease with an increase in the dendrimer generation. This fast energy depolarization is discussed through a coherent excitonic mechanism among dipoles oriented in different directions. We believe that the formation of coherent domains leads to fast energy migration extending over a large part of the dendrimer.  相似文献   
5.
The mechanism of energy transport in branching structures is suggestively related to the geometry of the multichromophore architecture. In organic conjugated dendrimers, both incoherent (hopping) and coherent energy transfer processes have been observed from different dendritic architectures with different building blocks. In this communication, we report the investigation of three fundamental dendritic architectures (G0) with the same attached chromophores, but with different core atoms, C, N, and P. The synthesis of a phosphorus-containing G0 system with distyrylbenzene chromophores is provided. These three systems provide a comparison by which the relative interaction of branching chromophores can be compared on the basis of their different branching centers. Ultrafast fluorescence anisotropy measurements provide a dual measure of the geometry of the chromophores around the different central units as well as the strength of the interactions among chromophores. The nitrogen-cored system appeared to have both the strongest coupling of chromophore excitation as well as the most planar geometry of the three. Interestingly, the phosphorus system appeared to have the least planar geometry, and its interaction strength was found to be stronger than that observed for the carbon system. These results provide a comparison of the energy migration dynamics of the most common and new dendritic architectures with applications for light emission and light harvesting.  相似文献   
6.
7.
Signal Amplification By Reversible Exchange in SHield Enabled Alignment Transfer (SABRE-SHEATH) is investigated to achieve rapid hyperpolarization of 13C1 spins of [1-13C]pyruvate, using parahydrogen as the source of nuclear spin order. Pyruvate exchange with an iridium polarization transfer complex can be modulated via a sensitive interplay between temperature and co-ligation of DMSO and H2O. Order-unity 13C (>50 %) polarization of catalyst-bound [1-13C]pyruvate is achieved in less than 30 s by restricting the chemical exchange of [1-13C]pyruvate at lower temperatures. On the catalyst bound pyruvate, 39 % polarization is measured using a 1.4 T NMR spectrometer, and extrapolated to >50 % at the end of build-up in situ. The highest measured polarization of a 30-mM pyruvate sample, including free and bound pyruvate is 13 % when using 20 mM DMSO and 0.5 M water in CD3OD. Efficient 13C polarization is also enabled by favorable relaxation dynamics in sub-microtesla magnetic fields, as indicated by fast polarization buildup rates compared to the T1 spin-relaxation rates (e. g., ∼0.2 s−1 versus ∼0.1 s−1, respectively, for a 6 mM catalyst-[1-13C]pyruvate sample). Finally, the catalyst-bound hyperpolarized [1-13C]pyruvate can be released rapidly by cycling the temperature and/or by optimizing the amount of water, paving the way to future biomedical applications of hyperpolarized [1-13C]pyruvate produced via comparatively fast and simple SABRE-SHEATH-based approaches.  相似文献   
8.
Fluorescent dyes are commonly conjugated to nanomaterials for imaging applications using stochastic synthesis conditions that result in a Poisson distribution of dye/particle ratios and therefore a broad range of photophysical and biodistribution properties. We report the isolation and characterization of generation 5 poly(amidoamine) (G5 PAMAM) dendrimer samples containing 1, 2, 3, and 4 fluorescein (FC) or 6‐carboxytetramethylrhodamine succinimidyl ester (TAMRA) dyes per polymer particle. For the fluorescein case, this was achieved by stochastically functionalizing dendrimer with a cyclooctyne “click” ligand, separation into sample containing precisely defined “click” ligand/particle ratios using reverse‐phase high performance liquid chromatography (RP‐HPLC), followed by reaction with excess azide‐functionalized fluorescein dye. For the TAMRA samples, stochastically functionalized dendrimer was directly separated into precise dye/particle ratios using RP‐HPLC. These materials were characterized using 1H and 19F NMR spectroscopy, RP‐HPLC, UV/Vis and fluorescence spectroscopy, lifetime measurements, and MALDI.  相似文献   
9.
A novel variant of an iridium‐based organometallic catalyst was synthesized and used to enhance the NMR signals of pyridine in a heterogeneous phase by immobilization on polymer microbead solid supports. Upon administration of parahydrogen (pH2) gas to a methanol mixture containing the HET‐SABRE catalyst particles and the pyridine, up to fivefold enhancements were observed in the 1H NMR spectra after sample transfer to high field (9.4 T). Importantly, enhancements were not due to any residual catalyst molecules in solution, thus supporting the true heterogeneity of the SABRE process. Further significant improvements may be expected by systematic optimization of experimental parameters. Moreover, the heterogeneous catalyst is easy to separate and recycle, thus opening a door to future potential applications varying from spectroscopic studies of catalysis, to imaging metabolites in the body without concern of contamination from expensive and potentially toxic metal catalysts or accompanying organic molecules.  相似文献   
10.
Summary Conditions have been given [7] under which a special automorphism over an automorphism admitting a simple approximation again admits a simple approximation, and so has simple spectrum.In this paper using different techniques to those employed in [7], we obtain improved results in the same direction. Specifically, conditions are given for a special automorphism over an automorphism, which admits either a simple approximation, or an approximation with suitable speed, to have bounded spectral multiplicity. Furthermore, we obtain as a corollary a result on primitive automorphisms, which partially generalises a result appearing in [4].  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号