首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学   5篇
力学   1篇
物理学   3篇
  2009年   1篇
  2008年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2000年   2篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
To study the influence of the chemical nature of headgroups and the type of counterion on the process of micellization in mixed surfactant systems, the cmc's of several binary mixtures of surfactants with the same length of hydrocarbon tail but with different headgroups have been determined as a function of the monomer composition using surface tension measurements. Based on these results, the interaction parameter between the surfactant species in mixed micelles has been determined using the pseudophase separation model. Experiments were carried out with (a) the nonionic/anionic C(12)E(6)/SDS ((hexa(ethyleneglycol) mono-n-dodecyl ether)/(sodium dodecyl sulfate)), (b) amphoteric/anionic DDAO/SDS ((dodecyldimethylamine oxide)/(sodium dodecyl sulfate)), and (c) amphoteric/nonionic C(12)E(6)/DDAO mixed surfactant systems. In the case of the mixed surfactant systems containing DDAO, experiments were carried out at pH 2 and pH 8 where the surfactant was in the cationic and nonionic form, respectively. It was shown that the mixtures of the nonionic surfactants with different kinds of headgroups exhibit almost ideal behavior, whereas for the nonionic/ionic surfactant mixtures, significant deviations from ideal behavior (attractive interactions) have been found, suggesting binding between the head groups. Molecular orbital calculations confirmed the existence of the strong specific interaction between (1) SDS and nonionic and cationic forms of DDAO and between (2) C(12)E(6) and the cationic form of DDAO. In the case for the C(12)E(6)/SDS system, an alternative mechanism for the stabilization of mixed micelles was suggested, which involved the lowering in the free energy of the hydration layer. Copyright 2000 Academic Press.  相似文献   
2.
We discuss the improvements in the aerosol properties characterization resulting from the additional multi-wavelength polarization measurements measured by a new CIMEL polarized sun/sky-photometer, CE318-DP. In order to process direct-sun, sky and polarization measurements in a wide spectral range (340–1640 nm), we developed new calibration methods and strategies, e.g. using the Langley plot method to calibrate both direct-sun irradiance and sky radiance, as well as combining laboratory facilities with a vicarious method to calibrate the polarized sky measurements. For studying the impact of new polarimetric measurements on the retrievals of aerosol properties, we have processed an extensive record of field measurements using an updated Dubovik and King retrieval algorithm [Dubovik O, Sinyuk A, Lapyonok T, Holben BN, Mishchenko MI, et al. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J Geophys Res 2006;111:D11208.]. A preliminary analysis shows that adding polarization in the inversion can reduce possible errors (notably for about 30% of our field cases) in the fine mode size distribution, real part of refractive index and particle shape parameter retrievals, especially for small particles.  相似文献   
3.
Confinement-induced symmetry breaking of interfacial surfactant layers   总被引:2,自引:0,他引:2  
Interaction forces between mesoscopic objects are fundamental to soft-condensed matter and are among the prime targets of investigation in colloidal systems. Surfactant molecules are often used to tailor these interactions. The forces are experimentally accessible and for a first theoretical analysis one can make use of a parallel-plate geometry. We present molecularly realistic self-consistent field calculations for an aqueous nonionic surfactant solution near the critical micellization concentration, in contact with two hydrophobic surfaces. The surfactants adsorb cooperatively, and form a monolayer onto each surface. At weak overlap the force increases with increasing compression of the monolayers until suddenly a symmetry braking takes place. One of the monolayers is removed jump-like and as the remaining monolayer can relax, some attraction is observed, which gives way to repulsion at further confinement. The restoring of symmetry at strong confinement occurs as a second-order transition and the force jumps once again from repulsion to attraction. It is anticipated that the metastable branch of the interaction curve will be probed in a typical force experiment. Under normal conditions pronounced hysteresis in the surface force is predicted, without the need to change the adsorbed amount jump-like.  相似文献   
4.
To clarify the effect of the surfactant head group on the emulsification process, dilute dodecane in water emulsions were prepared in a small flow-through cell with three surfactants which had the same hydrocarbon tail length but different head groups. The different surfactants types were (a) a nonionic, hexa(ethyleneglycol) mono n-dodecyl ether (C12E6), (b) an anionic, sodium dodecyl sulfate (SDS), and (c) a cationic, n-dodecyl pyridinium chloride (DPC), and the emulsions were prepared under the same conditions. From dynamic light scattering measurements, it was shown that the mean steady state droplet size of the emulsions (obtained after 20 min dispersion) could be related to the interfacial tension at concentrations in the region of the cmc. This result was in agreement with laminar and turbulent viscous flow theory. However, the particle size versus surface tension data for the different surfactant systems did not fall on a single line. This behavior suggested that the surfactant played a secondary role in defining the droplet size (in addition to reducing the interfacial tension) possibly through diffusion and relaxation, during deformation of the interface. In addition, it was found that the values of the equilibrium "surfactant packing densities" of the different surfactants at the oil/water interface were almost equal near the cmc, but the mean droplet size and the interfacial tension at the cmc decreased following the order DPC>SDS>C12E6 .  相似文献   
5.
应用于全球气溶胶测量网的太阳辐射计辐射定标系统   总被引:8,自引:4,他引:4  
依据全球气溶胶监测网对高精度辐射定标技术的需求,分析了太阳辐射计定标的特点与技术要求,通过国际合作建立了由野外场地和实验室内设备构成的太阳辐射计定标系统。基于该系统的太阳辐射计定标结果与国外定标结果的比对显示,所建立的系统在定标精度上达到了该类仪器辐射定标的国际水平,能够满足高性能气溶胶测量网络对太阳辐射计辐射定量精度的需求。  相似文献   
6.
The binding of organic contaminants to dissolved humic acids reduces the free concentration of the contaminants in the environment and also may cause changes to the solution properties of humic acids. Surfactants are a special class of contaminants that are introduced into the environment either through wastewater or by site-specific contamination. The amphiphilic nature of both surfactants and humic acids can easily lead to their mutual attraction and consequently affect the solution behavior of the humics. Binding of an anionic surfactant (sodium dodecyl sulfate, SDS) and two cationic surfactants (dodecyl- and cetylpyridinium chloride, DPC and CPC) to purified Aldrich humic acid (PAHA) is studied at pH values of 5, 7, and 10 in solutions with a 0.025 M ionic strength (I). Monomer concentrations of the surfactants are measured with a surfactant-selective electrode. At I = 0.025 M, no significant binding is observed between the anionic surfactant (SDS) and PAHA, whereas the two cationic surfactants (DPC, CPC) bind strongly to PAHA over the pH range investigated. The binding is due both to electrostatic and hydrophobic attraction. The initial affinity increases with increasing pH (i.e., negative charge of PAHA) and tail length of the surfactant. Binding reaches a pseudo-plateau value (2-5 mmol/g) when the charge associated with PAHA is neutralized by that of the bound surfactant molecules. The pseudo-plateau values for DPC and CPC are very similar and depend on the solution pH. The cationic surfactant-PAHA complexes precipitate when the charge neutralization point is reached. This occurs at approximately 10% of the critical micelle concentration or CMC. This type of phase separation commonly occurs during surfactant binding to oppositely charged polyelectrolytes. For CPC, the precipitation is complete, but in the case of DPC, a noticeable fraction of PAHA remains in solution. At very low CPC concentrations (less than 0.1% of the CMC), CPC binding to PAHA is cooperative. The investigated range of concentrations for DPC was too limited to reach a similar conclusion. The results of this study demonstrate that the fate of humic acids will be strongly affected by the presence of low cationic surfactant concentrations in aqueous environmental systems.  相似文献   
7.
Aerosol Optical Thickness (AOT), water vapor content and derived Angstrom exponent acquired by a CIMEL sun photometer in Beijing are analyzed. Monthly means computed from quality-assured daily means, seasonal trends and inter-annual variations are presented and discussed. Summer has the highest seasonal average AOT at 440 nm (τa440), Angstrom exponent (α440-870) and water vapor content with the values 0.93, 1.34 and 3.0 cm, respectively. The second highest seasonal average τa440 appears in spring with the largest variation of α440-870 and minimum α440-870 0.99 due to the impact of coarse particles. The minimum seasonal average τa440 (0.44) and water vapor content (0.4 cm) appear in winter. The annual average τa440 , α440-870 and water vapor content for about 4-year observation period are 0.70, 1.19 and 1.4 cm, respectively. All monthly average Angstrom exponents are within 0.8-1.4. which indicates aerosol in Beijing is a very complex mixture of both fine- and coarse-mode particles (from anthropogenic influence and natural mineral dust).  相似文献   
8.
Dilute emulsions of dodecane in water were prepared under constant flow rate conditions with binary surfactant systems. The droplet size distribution was measured as a function of the mixed surfactant composition in solution. The systems studied were (a) the mixture of anionic sodium dodecyl sulfate (SDS) with nonionic hexa(ethyleneglycol) mono n-dodecylether (C12E6) and (b) the mixture of cationic dodecyl pyridinium chloride (DPC) with C12E6. At a constant concentration of SDS or DPC surfactant in solution (below the CMC) the mean emulsion droplet size decreases with the increase in the amount of C12E6 added to the solution. However, a sharp break of this droplet size occurs at a critical concentration and beyond this point the mean droplet size did not significantly change upon further increase of the C12E6. This point was found to corresponded to the CMC of the mixed surfactant systems (as previously determined from microcalorimetry measurements) and this result suggested the mixed adsorption layer on the emulsion droplet was similar to the surfactant composition on the mixed micelles. The emulsion droplet size as a function of composition at the interface was also studied. The mean emulsion droplet size in SDS-C12E6 solution was found to be lower than that in DPC-C12E6 system at the equivalent mole fraction of ionic surfactant at interface. This was explained by the stronger interactions between sulphate and polyoxyethylene head groups at the interface, which facilitate the droplet break-up. Counterion binding parameter (beta) was also determined from zeta-potential of dodecane droplets under the same conditions and it was found that (beta) was independent of the type of the head group and the mole fraction of ionic surfactant at interface.  相似文献   
9.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号