首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
化学   11篇
晶体学   2篇
物理学   1篇
  2022年   4篇
  2021年   1篇
  2020年   2篇
  2017年   1篇
  2014年   1篇
  2013年   4篇
  2011年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
Ni-Dimethylglyoxime complex immobilized on functionalized Fe3O4 was synthesized by a post-grafting way and utilized as a novel, thermally stable, recoverable, and efficient for green synthesis of dicoumarols through reaction of 4-hydroxycoumarin with various aldehydes in excellent yields and higher rate. Fe3O4@SiO2-silylcyclopropyl-dimethylglyoxime-Ni superparamagnetic nanoparticles (MNPs) were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, vibrating sample magnetometer, and Brunauer–Emmett–Teller technique. This nanocatalyst could be conveniently recovered via the use of an external magnetic field and reused for subsequent reactions for at least 7 times without any remarkable change and decrease in catalytic activity.  相似文献   
2.
A linear array of closely spaced sound transducers is presented that can produce a subwavelength-focused intensity profile at a distance of a quarter wavelength. This work is related to research on super-resolution using metamaterials in both the acoustic and optical domains. It is designed using the principle of shifted beams, a near-field antenna array theory developed for the subwavelength focusing of electromagnetic waves. Once the spatial sound pattern is characterized for each source, the optimal weights for a minimum beam width can be calculated. An experiment operating at 4 kHz was able to successfully construct a super-focused beam.  相似文献   
3.
Agriculture is the backbone of every developing country. Among various crops, wheat (Triticum aestivum L.) belongs to the family Poaceae and is the most important staple food crop of various countries. Different biotic (viruses, bacteria and fungi) and abiotic stresses (water logging, drought and salinity) adversely affect the qualitative and quantitative attributes of wheat. Among these stresses, salinity stress is a very important limiting factor affecting the morphological, physiological, biochemical attributes and grain yield of wheat. This research work was carried out to evaluate the influence of phytosynthesized TiO2 NPs on the germination, physiochemical, and yield attributes of wheat varieties in response to salinity. TiO2 NPs were synthesized using TiO2 salt and a Buddleja asiatica plant extract as a reducing and capping agent. Various concentrations of TiO2 nanoparticles (20, 40, 60 and 80 mg/L) and salt solutions (NaCl) (100 and 150 mM) were used. A total of 20 mg/L and 40 mg/L improve germination attributes, osmotic and water potential, carotenoid, total phenolic, and flavonoid content, soluble sugar and proteins, proline and amino acid content, superoxide dismutase activity, and reduce malondialdhehyde (MDA) content at both levels of salinity. These two concentrations also improved the yield attributes of wheat varieties at both salinity levels. The best results were observed at 40 mg/L of TiO2 NPs at both salinity levels. However, the highest concentrations (60 and 80 mg/L) of TiO2 NPs showed negative effects on germination, physiochemical and yield characteristics and causes stress in both wheat varieties under control irrigation conditions and salinity stress. Therefore, in conclusion, the findings of this research are that the foliar application of TiO2 NPs can help to improve tolerance against salinity stress in plants.  相似文献   
4.
The incorporation of nanofillers such as graphene into polymers has shown significant improvements in mechanical characteristics, thermal stability, and conductivity of resulting polymeric nanocomposites. To this aim, the influence of incorporation of graphene nanosheets into ultra-high molecular weight polyethylene (UHMWPE) on the thermal behavior and degradation kinetics of UHMWPE/graphene nanocomposites was investigated. Scanning electron microscopy (SEM) analysis revealed that graphene nanosheets were uniformly spread throughout the UHMWPE’s molecular chains. X-Ray Diffraction (XRD) data posited that the morphology of dispersed graphene sheets in UHMWPE was exfoliated. Non-isothermal differential scanning calorimetry (DSC) studies identified a more pronounced increase in melting temperatures and latent heat of fusions in nanocomposites compared to UHMWPE at lower concentrations of graphene. Thermogravimetric analysis (TGA) and derivative thermogravimetric (DTG) revealed that UHMWPE’s thermal stability has been improved via incorporating graphene nanosheets. Further, degradation kinetics of neat polymer and nanocomposites have been modeled using equations such as Friedman, Ozawa–Flynn–Wall (OFW), Kissinger, and Augis and Bennett’s. The "Model-Fitting Method” showed that the auto-catalytic nth-order mechanism provided a highly consistent and appropriate fit to describe the degradation mechanism of UHMWPE and its graphene nanocomposites. In addition, the calculated activation energy (Ea) of thermal degradation was enhanced by an increase in graphene concentration up to 2.1 wt.%, followed by a decrease in higher graphene content.  相似文献   
5.
Poly(4-vinylpyridine)-supported copper iodide is reported as a green, efficient and recyclable catalyst for the synthesis of coumarin derivatives by the Pechmann reaction under solvent-free conditions. This catalyst can be recovered by simple filtration and recycled up to eight consecutive runs without any loss of their efficiency.  相似文献   
6.
Time-resolved X-ray (Tr-XAS) and optical transient absorption (OTA) spectroscopy on the pico-microsecond timescale coupled with density functional theory calculations are applied to study the light-induced spin crossover processes of a Fe-based macrocyclic complex in solution. Tr-XAS analysis after light illumination shows the formation of a seven-coordinated high-spin quintet metastable state, which relaxes to a six-coordinated high-spin configuration before decaying to the ground state. Kinetic analysis of the macrocyclic complex reveals an unprecedented long-lived decay lifetime of approximately 42.6 μs. Comparative studies with a non-macrocyclic counterpart illustrate a significantly shortened approximately 568-fold decay lifetime of about 75 ns, and highlight the importance of the ligand arrangement in stabilizing the reactivity of the excited state. Lastly, OTA analysis shows the seven-coordinated high-spin state to be formed within approximately 6.2 ps. These findings provide a complete understanding of the spin crossover reaction and relaxation pathways of the macrocyclic complex, and reveal the importance of a flexible coordination environment for their rational design.  相似文献   
7.
The reaction between a variety of o‐phenylenediamines (=benzene‐1,2‐diamines), dialkyl acetylenedicarboxylates, and derivatives of nitrostyrene (=(E)‐(2‐nitroethenyl)benzene) in the presence of sulfamic acid (SA; H3NSO3) as catalyst led to the corresponding pyrrolo[1,2‐a]quinoxaline‐4(5H)‐one derivatives in high yields.  相似文献   
8.
In this study, selenium nanoparticles (SeNPs) and cerium oxide nanoparticles (CeONPs) were synthesized by using the extract of Melia azedarach leaves, and Acorus calamusas rhizomes, respectively, and investigated for the biological and sustainable control of yellow, or stripe rust, disease in wheat. The green synthesized NPs were characterized by UV-Visible spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and X-ray diffraction (XRD). The SeNPs and CeONPs, with different concentrations (i.e., 10, 20, 30, and 40 mg/L), were exogenously applied to wheat infected with Puccinia striformis. SeNPs and CeONPs, at a concentration of 30 mg/L, were found to be the most suitable concentrations, which reduced the disease severity and enhanced the morphological (plant height, root length, shoot length, leaf length, and ear length), physiological (chlorophyll and membrane stability index), biochemical (proline, phenolics and flavonoids) and antioxidant (SOD and POD) parameters. The antioxidant activity of SeNPs and CeONPs was also measured. For this purpose, different concentrations (50, 100, 150, 200 and 400 ppm) of both SeNPs and CeONPs were used. The concentration of 400 ppm most promoted the DPPH, ABTS and reducing power activity of both SeNPs and CeONPs. This study is considered the first biocompatible approach to evaluate the potential of green synthesized SeNPs and CeONPs to improve the health of yellow, or stripe rust, infected wheat plants and to provide an effective management strategy to inhibit the growth of Puccinia striformis.  相似文献   
9.
Nanotechnology is the study and control of materials at length scales between 1 and 100 nanometers (nm), where incredible phenomena enable new applications. It affects all aspects of human life and is the most active research topic in modern materials science. Among the various metallic nanoparticles used in biomedical applications, silver nanoparticles (AgNPs) are among the most important and interesting nanomaterials. The aim of this study was to synthesize AgNPs from the leaf extract of Myrsine africana to investigate their antibacterial, antioxidant, and phytotoxic activities. When the leaf extract was treated with AgNO3, the color of the reaction solution changed from light brown to dark brown, indicating the formation of AgNPs. The UV-visible spectrum showed an absorption peak at 438 nm, confirming the synthesis of AgNPs. Scanning electron microscopy (SEM) showed that the AgNPs were spherical and oval with an average size of 28.32 nm. Fourier transform infrared spectroscopy confirms the presence of bio-compound functional groups on the surface of the AgNPs. The crystalline nature of the AgNPs was confirmed by XRD pattern. These biosynthesized AgNPs showed pronounced antibacterial activity against Gram-positive and Gram-negative bacteria, with higher inhibitory activity against Escherichia coli. At 40 µg/mL AgNPs, the highest antioxidant activity was obtained, which was 57.7% and an IC50 value of 77.56 µg/mL. A significant positive effect was observed on all morphological parameters when AgNPs were applied to wheat seedlings under constant external conditions at the different concentrations. The present study provides a cost-effective and environmentally friendly method for the synthesis of AgNPs, which can be effectively used in the field of therapeutics, as antimicrobial and diagnostic agents, and as plant growth promoters.  相似文献   
10.
In this paper, for an inductively heated Czochralski furnace used to grow sapphire single crystal, influence of the inner (wall‐to‐wall) and crystal internal (bulk) radiation on the characteristics of the growth process such as temperature and flow fields, structure of heat transfer and crystal‐melt interface has been studied numerically using the 2D quasi‐steady state finite element method. The obtained results of global analysis demonstrate a strong dependence of thermal field, heat transport structure and crystal‐melt interface on both types of radiative heat transfer within the growth furnace.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号