首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
化学   3篇
物理学   5篇
  2018年   2篇
  2013年   1篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2000年   1篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
In this comment, we show that the special attack [S.-J. Qin, F. Gao, Q.-Y. Wen, F.-C. Zhu, Opt. Commun. 281 (2008) 5472.], which claims to be able to obtain all the transmitted secret message bit values of the protocol of the multiparty quantum secret sharing of secure direct communication using single photons with random phase shift operations, fails. Furthermore, a class of similar attacks are also shown to fail to extract the secrete message.  相似文献   
2.
We calculate the time evolution of a cavity-QED system subject to a time dependentsinusoidal drive. The drive is modulated by an envelope function with the shape of apulse. The system consists of electrons embedded in a semiconductor nanostructure which iscoupled to a single mode quantized electromagnetic field. The electron-electron as well asphoton-electron interaction is treated exactly using “exact numerical diagonalization” andthe time evolution is calculated by numerically solving the equation of motion for thesystem’s density matrix. We find that the drive causes symmetric excitation andde-excitation where the system climbs up the Jaynes-Cummings ladder and descends back downsymmetrically into its original state. This effect is known at low electron-photoncoupling strengths but our main finding is how robust the effect is even at ultra-strongcoupling strength where the JC-model does not give qualitatively correct results. Weinvestigate the robustness of this symmetric behavior with respect to the drive de-tuningand pulse duration.  相似文献   
3.
In the thermodynamic limit, we present an exact calculation of the time dynamics of a central spin coupling with its environment at finite temperatures. The interactions belong to the Heisenberg XY type. The case of an environment with finite number of spins is also discussed. To get the reduced density matrix, we use a novel operator technique which is mathematically simple and physically clear, and allows us to treat systems and environments that could all be strongly coupled mutually and internally. The expectation value of the central spin and the von Neumann entropy are obtained.  相似文献   
4.
The present study was designed to exploit optimum lipophilicity and high water-exchange rate (k(ex)) on low molecular weight Gd(III) complexes to generate high bound relaxivity (r(1)(b)), upon binding to the lipophilic site of human serum albumin (HSA). Two new carbon backbone modified TTDA (3,6,10-tri(carboxymethyl)-3,6,10-triazadodecanedioic acid) derivatives, CB-TTDA and Bz-CB-TTDA, were synthesized. The complexes [Gd(CB-TTDA)(H(2)O)](2-) and [Gd(Bz-CB-TTDA)(H(2)O)](2-) both display high stability constant (log K(GdL) = 20.28 and 20.09, respectively). Furthermore, CB-TTDA (log K(Gd/Zn) = 4.22) and Bz-CB-TTDA (log K(Gd/Zn) = 4.12) exhibit superior selectivity of Gd(III) against Zn(II) than those of TTDA (log K(Gd/Zn) = 2.93), EPTPA-bz-NO(2) (log K(Gd/Zn) = 3.19), and DTPA (log K(Gd/Zn) = 3.76). However, the stability constant values of [Gd(CB-TTDA)(H(2)O)](2-) and [Gd(Bz-CB-TTDA)(H(2)O)](2-) are lower than that of MS-325. The parameters that affect proton relaxivity have been determined in a combined variable temperature (17)O NMR and NMRD study. The water exchange rates are comparable for the two complexes, 232 × 10(6) s(-1) for [Gd(CB-TTDA)(H(2)O)](2-) and 271 × 10(6) s(-1) for [Gd(Bz-CB-TTDA)(H(2)O)](2-). They are higher than those of [Gd(TTDA)(H(2)O)](2-) (146 × 10(6) s(-1)), [Gd(DTPA)(H(2)O)](2-) (4.1 × 10(6) s(-1)), and MS-325 (6.1 × 10(6) s(-1)). Elevated stability and water exchange rate indicate that the presence of cyclobutyl on the carbon backbone imparts rigidity and steric constraint to [Gd(CB-TTDA)(H(2)O)](2-)and [Gd(Bz-CB-TTDA)(H(2)O)](2-). In addition, the major objective for selecting the cyclobutyl is to tune the lipophilicity of [Gd(Bz-CB-TTDA)(H(2)O)](2-). The binding affinity of [Gd(Bz-CB-TTDA)(H(2)O)](2-) to HSA was evaluated by ultrafiltration study across a membrane with a 30 kDa MW cutoff, and the first three stepwise binding constants were determined by fitting the data to a stoichiometric model. The binding association constants (K(A)) for [Gd(CB-TTDA)(H(2)O)](2-) and [Gd(Bz-CB-TTDA)(H(2)O)](2-) are 1.1 × 10(2) and 1.5 × 10(3), respectively. Although the K(A) value for [Gd(Bz-CB-TTDA)(H(2)O)](2-) is lower than that of MS-325 (K(A) = 3.0 × 10(4)), the r(1)(b) value, r(1)(b) = 66.7 mM(-1) s(-1) for [Gd(Bz-CB-TTDA)(H(2)O)](2-), is significantly higher than that of MS-325 (r(1)(b) = 47.0 mM(-1) s(-1)). As measured by the Zn(II) transmetalation process, the kinetic stabilities of [Gd(CB-TTDA)(H(2)O)](2-), [Gd(Bz-CB-TTDA)(H(2)O)](2-), and [Gd(DTPA)(H(2)O)](2-) are similar and are significantly higher than that of [Gd(DTPA-BMA)(H(2)O)](2-). High thermodynamic and kinetic stability and optimized lipophilicity of [Gd(CB-TTDA)(H(2)O)](2-) make it a favorable blood pool contrast agent for MRI.  相似文献   
5.
We calculate the current correlations for the steady-state electron transport through multi-level parallel quantum dots embedded in a short quantum wire, that is placed in a non-perfect photon cavity. We account for the electron–electron Coulomb interaction, and the para- and diamagnetic electron–photon interactions with a stepwise scheme of configuration interactions and truncation of the many-body Fock spaces. In the spectral density of the temporal current–current correlations we identify all the transitions, radiative and non-radiative, active in the system in order to maintain the steady state. We observe strong signs of two types of Rabi oscillations.  相似文献   
6.
The thionium ions 10 generated by Pummerer reaction of N-aryl-N-methyl-3-(phenylsulfinyl)propionamides 4 caused not only an electrophilic cyclization reaction producing 2-quinolones 8, but also the formation of the vinyl sulfides 5 and 6 in favor of the latter reaction. On the other hand, the treatment of the vinyl sulfides 5 and 6 with p-toluenesulfonic acid induced cyclization to afford the 2-quinolones 8 in excellent to moderate yields, depending on the electronic properties of the aromatic ring, thus providing a convenient method for the synthesis of methoxy-2-quinolones.  相似文献   
7.
We show that a Rabi‐splitting of the states of strongly interacting electrons in parallel quantum dots embedded in a short quantum wire placed in a photon cavity can be produced by either the para‐ or the dia‐magnetic electron‐photon interactions when the geometry of the system is properly accounted for and the photon field is tuned close to a resonance with the electron system. We use these two resonances to explore the electroluminescence caused by the transport of electrons through the one‐ and two‐electron ground states of the system and their corresponding conventional and vacuum electroluminescense as the central system is opened up by coupling it to external leads acting as electron reservoirs. Our analysis indicates that high‐order electron‐photon processes are necessary to adequately construct the cavity‐photon dressed electron states needed to describe both types of electroluminescence.  相似文献   
8.
An extremely useful evolution equation that allows systematically calculating the two-time correlation functions (CF's) of system operators for non-Markovian open (dissipative) quantum systems is derived. The derivation is based on perturbative quantum master equation approach, so non-Markovian open quantum system models that are not exactly solvable can use our derived evolution equation to easily obtain their two-time CF's of system operators, valid to second order in the system-environment interaction. Since the form and nature of the Hamiltonian are not specified in our derived evolution equation, our evolution equation is applicable for bosonic and/or fermionic environments and can be applied to a wide range of system-environment models with any factorized (separable) system-environment initial states (pure or mixed). When applied to a general model of a system coupled to a finite-temperature bosonic environment with a system coupling operator L in the system-environment interaction Hamiltonian, the resultant evolution equation is valid for both L = L(?) and L ≠ L(?) cases, in contrast to those evolution equations valid only for L = L(?) case in the literature. The derived equation that generalizes the quantum regression theorem (QRT) to the non-Markovian case will have broad applications in many different branches of physics. We then give conditions on which the QRT holds in the weak system-environment coupling case and apply the derived evolution equation to a problem of a two-level system (atom) coupled to the finite-temperature bosonic environment (electromagnetic fields) with L ≠ L(?).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号