首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
化学   5篇
物理学   2篇
  2018年   1篇
  2012年   2篇
  2011年   2篇
  2008年   1篇
  2000年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
The extraction of Al(III) and Zn(II) from an aqueous solution with two water-in-oil microemulsions, one containing di(2-ethylhexyl)phosphoric acid (DEHPA), was investigated to aid the understanding of the role of the extractant and the metal specific characteristics in the mechanism of microemulsion extraction. The extraction of Al with the DEHPA microemulsion increased by a factor of about 10 with respect to that in the conventional DEHPA system, whereas the extraction of Zn was lower than that in the single DEHPA system. Extraction with the DEHPA-free microemulsion was very low, showing that metal ion solubilization was not important in the mechanism of microemulsion extraction. It is proposed that the effect of the mixed microemulsion on the metal distribution coefficient is the result of the balance between a decrease in the complexation reaction yield due to the interaction between butanol and DEHPA, and the adsorption of the metal complex at the macro- and microinterfaces. The former leads to a decrease in Zn(II) extraction and the latter to Al(III) extraction synergism. Copyright 2000 Academic Press.  相似文献   
2.
在航空航天领域,为了加速系统设计及测试进度,通常需要进行半实物实时仿真,即控制器用实物,受控对象采用数学模型。本文开发出了基于Matlab/Simulink的两相传热模块,并用其搭建了某机械泵驱动两相回路的实时动态模型。通过与实验的对比,验证了模型的可靠性,表明该模型满足实时要求,可以在下一步用于半实物仿真。  相似文献   
3.
A new molecular adduct of MgCl(2) with isobutanol, namely MgCl(2)·4((CH(3))(2)CHCH(2)OH) (MgiBOH), has been prepared as a precursor to the supporting material for an olefin polymerization catalyst. The MgiBOH adduct and final titanated Ziegler-Natta catalysts have been thoroughly characterized by powder XRD, thermal analysis, Raman spectroscopy and solid-state NMR for structural and spectroscopy aspects. A peak observed at 712 cm(-1) in the Raman spectra of MgiBOH indicates the characteristic Mg-O(6) breathing mode and the formation of the adduct. The diffraction feature at 2θ = 7.8° (d = 11.223 ?) in the XRD confirms the adduct formation and the layered structure. The aim of the present article is to study how the insertion of a bulky isobutanol moiety affects the structural and electronic properties of the MgCl(2)·isobutanol molecular adduct. Indeed, the focus of the present study is to explore how the presence of isobutanol, in the initial molecular adduct, influences the final Z-N catalyst properties and its activity.  相似文献   
4.
Benzyl alcohol has been used to prepare a single phase MgCl(2).6BzOH molecular adduct as a support for an ethylene polymerization catalyst (Ziegler catalyst). The structural, spectroscopic and morphological aspects of the MgCl(2).6BzOH molecular adduct and the Ziegler catalyst have been thoroughly studied by various physicochemical characterization techniques. The presence of MgO(6) octahedrons due to the interaction of Mg(2+) with six -OH groups of the benzyl alcohol is confirmed from a Raman feature at 703 cm(-1), and structural studies. The supported catalyst activity has been evaluated for the ethylene polymerization reaction. The lower polymerization activity of the titanated Ziegler-Natta catalyst compared with a standard catalyst is attributed to the strong interaction of titanium chloride with the support and associated electronic factors.  相似文献   
5.
Dehydrogenation or oxidative dehydrogenation (ODH) of alkanes to produce alkenes directly from natural gas/shale gas is gaining in importance. Ti3AlC2, a MAX phase, which hitherto had not been used in catalysis, efficiently catalyzes the ODH of n‐butane to butenes and butadiene, which are important intermediates for the synthesis of polymers and other compounds. The catalyst, which combines both metallic and ceramic properties, is stable for at least 30 h on stream, even at low O2:butane ratios, without suffering from coking. This material has neither lattice oxygens nor noble metals, yet a unique combination of numerous defects and a thin surface Ti1?yAlyO2?y/2 layer that is rich in oxygen vacancies makes it an active catalyst. Given the large number of compositions available, MAX phases may find applications in several heterogeneously catalyzed reactions.  相似文献   
6.
The algebraic structure of chiral anomalies ismade globally valid on non-trivial bundles by the introduction of a fixed background connection. Some of the techniques used in the study of the anomaly are improved or generalized, including a systematic way of generating towers of ??descent equations??.  相似文献   
7.

Background

The emergence of multi- and extensively-drug resistant Mycobacterium tuberculosis strains has created an urgent need for new agents to treat tuberculosis (TB). The enzymes of shikimate pathway are attractive targets to the development of antitubercular agents because it is essential for M. tuberculosis and is absent from humans. Chorismate synthase (CS) is the seventh enzyme of this route and catalyzes the NADH- and FMN-dependent synthesis of chorismate, a precursor of aromatic amino acids, naphthoquinones, menaquinones, and mycobactins. Although the M. tuberculosis Rv2540c (aroF) sequence has been annotated to encode a chorismate synthase, there has been no report on its correct assignment and functional characterization of its protein product.

Results

In the present work, we describe DNA amplification of aroF-encoded CS from M. tuberculosis (Mt CS), molecular cloning, protein expression, and purification to homogeneity. N-terminal amino acid sequencing, mass spectrometry and gel filtration chromatography were employed to determine identity, subunit molecular weight and oligomeric state in solution of homogeneous recombinant Mt CS. The bifunctionality of Mt CS was determined by measurements of both chorismate synthase and NADH:FMN oxidoreductase activities. The flavin reductase activity was characterized, showing the existence of a complex between FMNox and Mt CS. FMNox and NADH equilibrium binding was measured. Primary deuterium, solvent and multiple kinetic isotope effects are described and suggest distinct steps for hydride and proton transfers, with the former being more rate-limiting.

Conclusion

This is the first report showing that a bacterial CS is bifunctional. Primary deuterium kinetic isotope effects show that C4-proS hydrogen is being transferred during the reduction of FMNox by NADH and that hydride transfer contributes significantly to the rate-limiting step of FMN reduction reaction. Solvent kinetic isotope effects and proton inventory results indicate that proton transfer from solvent partially limits the rate of FMN reduction and that a single proton transfer gives rise to the observed solvent isotope effect. Multiple isotope effects suggest a stepwise mechanism for the reduction of FMNox. The results on enzyme kinetics described here provide evidence for the mode of action of Mt CS and should thus pave the way for the rational design of antitubercular agents.
  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号