首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   4篇
  2022年   1篇
  2021年   2篇
  2018年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Derivatives of 9-phenyl-9H-carbazole were synthesized as efficient emitters exhibiting both thermally activated delayed fluorescence and aggregation-induced emission enhancement. Effects of methoxy and tert-butyl substituents at the different positions of carbazolyl groups on the properties of the emitters were studied. Depending on the substitutions, photoluminescence quantum yields (PLQY) of non-doped solid films of the compounds ranged from 17 % to 53 % which were much higher than those observed for the solutions in low-polarity solvent toluene. Compounds substituted at C-3 and C-6 positions of carbazole moiety by methoxy- and tert-butyl- groups showed the highest solid-state PLQY. Ionization potentials of the studied derivatives in solid-state were found to be in the short range of 5.75–5.89 eV. Well-balanced hole and electron mobilities were detected for tert-butyl-substituted compound. They exceeded 10−4 cm2 (V×s)−1 at electric fields higher than 3×105 V cm−1. Two compounds with the highest solid-state PLQYs showed higher efficiencies in non-doped organic light-emitting diodes than in the doped devices. Maximum external quantum efficiency of 7.2 % and brightness of 15000 cd m−2 were observed for the best device.  相似文献   
2.
Journal of Solid State Electrochemistry - Light-assisted electrochemical processes have the potential to replace energy-intensive electrosynthesis technologies, especially in the area of strong...  相似文献   
3.
A group of polyethers containing electroactive pendent 4,7-diarylfluorene chromophores have been prepared by the multi-step synthetic route. Full characterization of their structures has been presented. The polymeric materials represent derivatives of high thermal stability with initial thermal degradation temperatures in a range of 392–397 °C. Glass transition temperatures of the amorphous polymers range from 28 °C to 63 °C and depend on structures of the 4,7-diarylfluorene chromophores. Electron photoemission spectra of thin layers of the electroactive derivatives showed ionization potentials in the range of 5.8–6.0 eV. Hole injecting/transporting properties of the prepared polymeric materials were confirmed during formation of organic light-emitting diodes with tris(quinolin-8-olato)aluminium (Alq3) as a green emitter, which also serves as an electron transporting layer. The device using hole-transporting polymer with electronically isolated 2,7-di(4-biphenyl)fluorene chromophores demonstrated the best overall performance with low turn on voltage of 3 V, high current efficiency exceeding 1.7 cd/A, and with maximum brightness over 200 cd/m2. The organic light-emitting diode (OLED) characteristics were measured in non-optimized test devices. The efficiencies could be further improved by an optimization of device structure, formation conditions, and encapsulation of the devices.  相似文献   
4.
Low color temperature candlelight organic light-emitting diodes (LEDs) are human and environmentally friendly because of the absence of blue emission that might suppress at night the secretion of melatonin and damage retina upon long exposure. Herein, we demonstrated a lighting device incorporating a phenoxazine-based host material, 3,3-bis(phenoxazin-10-ylmethyl)oxetane (BPMO), with the use of orange-red and yellow phosphorescent dyes to mimic candlelight. The resultant BPMO-based simple structured candlelight organic LED device permitted a maximum exposure limit of 57,700 s, much longer than did a candle (2750 s) or an incandescent bulb (1100 s) at 100 lx. The resulting device showed a color temperature of 1690 K, which is significantly much lower than that of oil lamps (1800 K), candles (1900 K), or incandescent bulbs (2500 K). The device showed a melatonin suppression sensitivity of 1.33%, upon exposure for 1.5 h at night, which is 66% and 88% less than the candle and incandescent bulb, respectively. Its maximum power efficacy is 23.1 lm/W, current efficacy 22.4 cd/A, and external quantum efficiency 10.2%, all much higher than the CBP-based devices. These results encourage a scalable synthesis of novel host materials to design and manufacture high-efficiency candlelight organic LEDs.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号