首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
化学   3篇
  2016年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有3条查询结果,搜索用时 62 毫秒
1
1.
The adsorption of N-isopropylacrylamide (NIPAM) based thermoresponsive polymers at the air-water interface was investigated by using drop and bubble shape tensiometry. The molecular weight dependence of polymer adsorption rate was studied by using narrowly distributed polymer fractions (polydispersity < 1.2) that were prepared by solvent:nonsolvent fractionation. The time-dependent surface tension profiles were fitted to the Hua-Rosen equation and the t values obtained were applied for interpretation of the kinetic data. It was found that the rate of polymer adsorption increased as the molecular weight of the polymer decreased. The relationship between polymer surface concentration and surface tension was determined by applying the pendant drop as a Langmuir-type film balance. From this relationship, the kinetics of polymer adsorption determined experimentally was compared with the adsorption rates predicted by a diffusion-controlled adsorption model based on the Ward-Tordai equation. The predicted adsorption rates were in good agreement with what was found experimentally. The dependence of the adsorption rate on the molecular weight of polymers can be satisfactorily described within the diffusion-controlled model.  相似文献   
2.
The main aim of this study was to synthesis of poly (lactic acid) (PLA)‐graft‐glycidyl methacrylate (GMA) as well as its influence on the properties of PLA/banana fiber biocomposites. PLA‐graft‐GMA graft copolymer (GC) was synthesized by melt blending PLA with GMA using benzoyl peroxide and dicumyl peroxide as initiators. Graft copolymerization was confirmed by FTIR and 1H‐NMR spectroscopic studies. PLA/silane treated banana fiber (SiB) biocomposites with various GC concentrations were prepared by melt blending followed by injection molding techniques. The influence of GC content on the mechanical, thermal and moisture resistance properties of the composite was investigated. The addition of 15 wt% GC content in the biocomposite provided optimum tensile and flexural strength, which is attributed to the greater compatibility between fiber and PLA matrix. The thermal properties of biocomposites have been evaluated using thermogravimetric analysis which provided evidence of improved interfacial adhesion between SiB and PLA by the addition of GC. Additionally, GC enhanced the moisture absorption resistance of biocomposites. These results indicated that GC is indeed a good candidate as a compatibilizing agent to improve the compatibility in PLA/fiber biocomposites. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
3.
Surface properties of poly(N-isopropylacrylamide) (PNIPAM) copolymer films were studied by contact angle measurements and optical and atomic force microscopy. We prepared a series of copolymers of N-isopropylacrylamide with N-tert-butylacrylamide (NtBA) in order of increasing hydrophobicity. The measurements of the advancing contact angle of water at 37 degrees C were hampered by the observation of a distinct stick/slip pattern on all polymers in the series with the exception of poly(NtBA) (PNtBA). We attributed this behavior to the film deformation by the vertical component of liquid surface tension leading to the pinning of the moving contact line. This was confirmed by the observation of a ridge formed at the pinned contact line by optical microscopy. However, meaningful contact (without the stick/slip pattern and with a time-independent advancing contact angle) angles for this thermoresponsive polymer series could be obtained with carefully selected organic liquids. We used the Li and Neumann equation of state to calculate the surface energy and contact angles of water for all polymers in the series of copolymers and van Oss, Chaudhury, and Good (vOCG) acid-base theory for PNtBA. The surface energies of the thermoresponsive polymers were in the range of 38.9 mJ/m2 (PNIPAM) to 31 mJ/m2 (PNtBA) from the equation of state approach. The surface energy of PNtBA calculated using vOCG theory was 29.0 mJ/m2. The calculated contact angle for PNIPAM (74.5 +/- 0.2 degrees ) is compared with previously reported contact angles obtained for PNIPAM-modified surfaces.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号