首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   2篇
  国内免费   1篇
化学   34篇
力学   2篇
数学   11篇
物理学   87篇
  2022年   2篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   3篇
  2016年   7篇
  2015年   2篇
  2014年   3篇
  2013年   3篇
  2012年   6篇
  2011年   17篇
  2010年   5篇
  2009年   4篇
  2008年   7篇
  2007年   7篇
  2006年   6篇
  2005年   8篇
  2004年   12篇
  2003年   2篇
  2002年   10篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1996年   3篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1989年   2篇
  1987年   1篇
  1986年   2篇
  1980年   1篇
  1974年   2篇
  1967年   1篇
  1957年   1篇
排序方式: 共有134条查询结果,搜索用时 15 毫秒
1.
2.
Mesoporous silica-coated hollow manganese oxide (HMnO@mSiO(2)) nanoparticles were developed as a novel T(1) magnetic resonance imaging (MRI) contrast agent. We hypothesized that the mesoporous structure of the nanoparticle shell enables optimal access of water molecules to the magnetic core, and consequently, an effective longitudinal (R(1)) relaxation enhancement of water protons, which value was measured to be 0.99 (mM(-1)s(-1)) at 11.7 T. Adipose-derived mesenchymal stem cells (MSCs) were efficiently labeled using electroporation, with much shorter T(1) values as compared to direct incubation without electroporation, which was also evidenced by signal enhancement on T(1)-weighted MR images in vitro. Intracranial grafting of HMnO@mSiO(2)-labeled MSCs enabled serial MR monitoring of cell transplants over 14 days. These novel nanoparticles may extend the arsenal of currently available nanoparticle MR contrast agents by providing positive contrast on T(1)-weighted images at high magnetic field strengths.  相似文献   
3.
Chemical exchange saturation transfer (CEST) is a new approach for generating magnetic resonance imaging (MRI) contrast that allows monitoring of protein properties in vivo. In this method, a radiofrequency pulse is used to saturate the magnetization of specific protons on a target molecule, which is then transferred to water protons via chemical exchange and detected using MRI. One advantage of CEST imaging is that the magnetizations of different protons can be specifically saturated at different resonance frequencies. This enables the detection of multiple targets simultaneously in living tissue. We present here a CEST MRI approach for detecting the activity of cytosine deaminase (CDase), an enzyme that catalyzes the deamination of cytosine to uracil. Our findings suggest that metabolism of two substrates of the enzyme, cytosine and 5-fluorocytosine (5FC), can be detected using saturation pulses targeted specifically to protons at +2 ppm and +2.4 ppm (with respect to water), respectively. Indeed, after deamination by recombinant CDase, the CEST contrast disappears. In addition, expression of the enzyme in three different cell lines exhibiting different expression levels of CDase shows good agreement with the CDase activity measured with CEST MRI. Consequently, CDase activity was imaged with high-resolution CEST MRI. These data demonstrate the ability to detect enzyme activity based on proton exchange. Consequently, CEST MRI has the potential to follow the kinetics of multiple enzymes in real time in living tissue.  相似文献   
4.

Background

Histatins are histidine rich polypeptides produced in the parotid and submandibular gland and secreted into the saliva. Histatin-3 and ?5 are the most important polycationic histatins. They possess antimicrobial activity against fungi such as Candida albicans. Histatin-5 has a higher antifungal activity than histatin-3 while histatin-3 is mostly involved in wound healing in the oral cavity. We found that these histatins, like other polycationic peptides and proteins, such as LL-37, lysozyme and histones, interact with extracellular actin.

Results

Histatin-3 and ?5 polymerize globular actin (G-actin) to filamentous actin (F-actin) and bundle F-actin filaments. Both actin polymerization and bundling by histatins is pH sensitive due to the high histidine content of histatins. In spite of the equal number of net positive charges and histidine residues in histatin-3 and ?5, less histatin-3 is needed than histatin-5 for polymerization and bundling of actin. The efficiency of actin polymerization and bundling by histatins greatly increases with decreasing pH. Histatin-3 and ?5 induced actin bundles are dissociated by 100 and 50 mM NaCl, respectively. The relatively low NaCl concentration required to dissociate histatin-induced bundles implies that the actin-histatin filaments bind to each other mainly by electrostatic forces. The binding of histatin-3 to F-actin is stronger than that of histatin-5 showing that hydrophobic forces have also some role in histatin-3- actin interaction. Histatins affect the fluorescence of probes attached to the D-loop of G-actin indicating histatin induced changes in actin structure. Transglutaminase cross-links histatins to actin. Competition and limited proteolysis experiments indicate that the main histatin cross-linking site on actin is glutamine-49 on the D-loop of actin.

Conclusions

Both histatin-3 and ?5 interacts with actin, however, histatin 3 binds stronger to actin and affects actin structure at lower concentration than histatin-5 due to the extra 8 amino acid sequence at the C-terminus of histatin-3. Extracellular actin might regulate histatin activity in the oral cavity, which should be the subject of further investigation.
  相似文献   
5.
The Randall–Sundrum (RS) framework has a built in protection against flavour violation, but still generically suffers from little CP problems. The most stringent bound on flavour violation is due to ?K?K, which is inversely proportional to the fundamental Yukawa scale. Hence the RS ?K?K problem can be ameliorated by effectively increasing the Yukawa scale with a bulk Higgs, as was recently observed in arXiv:0810.1016. We point out that incorporating the constraint from ?/?K?/?K, which is proportional to the Yukawa scale, raises the lower bound on the KK scale compared to previous analyses. The bound is conservatively estimated to be 5.5 TeV, choosing the most favorable Higgs profile, and 7.5 TeV for the profile which roughly reproduces the two site case. Relaxing this bound might require some form of RS flavour alignment. As a by-product of our analysis, we also provide the leading order flavour structure of the theory with a bulk Higgs.  相似文献   
6.
7.
8.
We investigated simultaneously the 12C(e,e'p) and 12C(e,e'pp) reactions at Q2=2 (GeV/c)2, xB=1.2, and in an (e, e'p) missing-momentum range from 300 to 600 MeV/c. At these kinematics, with a missing momentum greater than the Fermi momentum of nucleons in a nucleus and far from the delta excitation, short-range nucleon-nucleon correlations are predicted to dominate the reaction. For (9.5+/-2)% of the 12C(e,e'p) events, a recoiling partner proton was observed back-to-back to the 12C(e,e'p) missing-momentum vector, an experimental signature of correlations.  相似文献   
9.
Biointegration of titanium implants in the body is controlled by their surface properties. Improving surface properties by coating with a bioactive polymer is a promising approach to improve the biological performance of titanium implants. To optimize the grafting processes, it is important to fully understand the composition and structure of the modified surfaces. The main focus of this study is to provide a detailed, multitechnique characterization of a bioactive poly(sodium styrene sulfonate) (pNaSS) thin film grafted from titanium surfaces via a two-step procedure. Thin titanium films (~50 nm thick with an average surface roughness of 0.9 ± 0.2 nm) prepared by evaporation onto silicon wafers were used as smooth model substrates. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) showed that the titanium film was covered with a TiO(2) layer that was at least 10 nm thick and contained hydroxyl groups present at the outermost surface. These hydroxyl groups were first modified with a 3-methacryloxypropyltrimethoxysilane (MPS) cross-linker. XPS and ToF-SIMS showed that a monolayer of the MPS molecules was successfully attached onto the titanium surfaces. The pNaSS film was grafted from the MPS-modified titanium through atom transfer radical polymerization. Again, XPS and ToF-SIMS were used to verify that the pNaSS molecules were successfully grafted onto the modified surfaces. Atomic force microscopy analysis showed that the film was smooth and uniformly covered the surface. Fourier transform infrared spectroscopy indicated that an ordered array of grafted NaSS molecules were present on the titanium surfaces. Sum frequency generation vibration spectroscopy and near edge X-ray absorption fine structure spectroscopy illustrated that the NaSS molecules were grafted onto the titanium surface with a substantial degree of orientational order in the styrene rings.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号