首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
化学   6篇
物理学   2篇
  2008年   2篇
  2006年   2篇
  2005年   1篇
  2001年   1篇
  1996年   1篇
  1995年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
2.
3.
Introduction 2, 3-Dichloro-5, 6-dicyanobenzoquinone (DDQ) can react with lignans of the mono- arylidene-butyrolactone1, aryltetralin2, dibenzylbutane3 and aryltetralin-butyrolactone4,5 series. We have studied the reactions of this reagent with podophyllotoxin 1, which is a well-known natural product on account of its long history of use in folk medicine and the biological activity of its many derivatives6. In particular, derivatives of 4-demethyl epipodophyllotoxin are used in cancer chemo…  相似文献   
4.
Polymersomes are vesicles made from synthetic block copolymers. The adhesiveness of micron-sized polymersomes, functionalized with antibodies that bind to vascular cell adhesion molecules, which could be useful for vascular targeting, was measured. Intercellular adhesion molecule-1 (ICAM-1) is an endothelial cell adhesion molecule whose expression increases during inflammatory disease, and is therefore a natural target for vascular delivery. We functionalized polymersomes with an anti-ICAM-1 antibody, using modular biotin-avidin chemistry. Micropipet aspiration was used to confirm specific adhesion and measure the adhesion strength between an anti-ICAM-1-coated polymersome and an ICAM-1-coated polystyrene microsphere at various surface densities of adhesion molecules. The adhesion is kinetically trapped, and adhesion strength is quantified by the critical tension for detachment. The adhesion strength increases in proportion to the surface density of anti-ICAM-1 molecules, in contrast to results seen previously when measuring adhesion between biotinylated vesicles and avidin-coated beads (Lin et al. Langmuir 2004, 20, 5493). The difference in dependence on the density of functional groups is likely due to the molecular presentation at the vesicle surface; in the current study, the presentation of biotinylated anti-ICAM-1 on a layer of avidin leads to the effective presentation of the anti-ICAM-1 and, thus, a monotonic increase in adhesiveness with antibody density.  相似文献   
5.
6.
7.
Incorporation of an extended family of multi[(porphinato)zinc(II)] (PZn)-based supermolecular fluorophores into the lamellar membranes of polymersomes (50 nm to 50 mum diameter polymer vesicles) gives rise to electrooptically diverse nano-to-micron (meso) scale soft materials. Studies that examine homogeneous suspensions of 100 nm diameter emissive polymersomes demonstrate fluorescence energy modulation over a broad spectral domain of the visible and near-infrared (600-900 nm). These polymersomal structures highlight that the nature of intermembranous polymer-to-fluorophore contacts depends on the position and identity of the porphyrins' phenyl ring substituents. Emissive polymersomes are shown to possess reduced spectral heterogeneity with respect to the established optical signatures of these PZn-based supermolecular fluorophores in solution; additionally, selection of fluorophore ancillary substituents predictably controls the nature of polymer-emitter noncovalent interactions to provide an important additional mechanism to further modulate the fluorescence band maxima of these meso-scale emissive vesicles.  相似文献   
8.
Formed through cooperative self-assembly of amphiphilic diblock copolymers and electronically conjugated porphyrinic near-infrared (NIR) fluorophores (NIRFs), NIR-emissive polymersomes (50 nm to 50 microm diameter polymer vesicles) define a family of organic-based, soft-matter structures that are ideally suited for deep-tissue optical imaging and sensitive diagnostic applications. Here, we describe magic angle and polarized pump-probe spectroscopic experiments that: (i) probe polymersome structure and NIRF organization and (ii) connect emitter structural properties and NIRF loading with vesicle emissive output at the nanoscale. Within polymersome membrane environments, long polymer chains constrain ethyne-bridged oligo(porphinato)zinc(II) based supermolecular fluorophore (PZn n ) conformeric populations and disperse these PZn n species within the hydrophobic bilayer. Ultrafast excited-state transient absorption and anisotropy dynamical studies of NIR-emissive polymersomes, in which the PZn n fluorophore loading per nanoscale vesicle is varied between 0.1-10 mol %, enable the exploration of concentration-dependent mechanisms for nonradiative excited-state decay. These experiments correlate fluorophore structure with its gross spatial arrangement within specific nanodomains of these nanoparticles and reveal how compartmentalization of fluorophores within reduced effective dispersion volumes impacts bulk photophysical properties. As these factors play key roles in determining the energy transfer dynamics between dispersed fluorophores, this work underscores that strategies that modulate fluorophore and polymer structure to optimize dispersion volume in bilayered nanoscale vesicular environments will further enhance the emissive properties of these sensitive nanoscale probes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号