首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
化学   3篇
数学   1篇
物理学   6篇
  2018年   1篇
  2016年   2篇
  2015年   2篇
  2013年   3篇
  2012年   1篇
  1998年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
2.
In this work, polypropylene (PP) matrix reinforced with several single-walled carbon nanotubes (SWNTs) concentrations were prepared by a melt-mixing method. The effect of SWNTs on the thermal degradation behavior of polypropylene was studied by thermal gravimetric analysis. The results revealed that adding the SWNTs into the PP can increase the decomposition temperature. The results obtained from differential scanning calorimetry showed that incorporating SWNTs reduced the crystallinity but increased the crystallization temperature of the PP. The mechanical measurements showed that the tensile modulus of the nanocomposite was greatly enhanced to 882 MPa, compared to 485 MPa for pristine PP. For wide-angle X-ray diffraction tests, two cooling methods were used. The addition of SWNTs to the polymer in slow-cooled samples resulted in partial crystallization in the γ -form, while SWNTs had no effect in water-cooled samples, the sample crystallizing in the α -form. Scanning electron microscopy observations on the fracture surface of the nanocomposites showed the dispersion of the SWNTs in the nanocomposites.  相似文献   
3.
The self-consistent charge density functional based tight-binding method is used to calculate the effect of curvature on the structure, average energy of atoms and Young's modulus of armchair single-wall carbon nanotubes (SWCNTs) under axial strains. We found that as the amount of curvature increases, the average energy of atoms and the Young's modulus decrease and the equilibrium CC distance increases for (7,7) SWCNTs. However, we also found that the average energy of atoms and Young's modulus of (5,5) SWCNTs are weakly affected by increasing the amount of curvature. Our results also show that the average energy of atoms and Young's modulus of smaller diameter armchair nanotubes are smaller than that of the larger diameter ones.  相似文献   
4.
5.
Experimental evidence for ferromagnetic behavior of liquid droplets produced by laser ablation from amorphous alloys is presented for the first time. Thin films of amorphous magnetic materials are fabricated by a laser deposition technique in the presence and in the absence of magnetic field. The differences in the parameters of deposited films are attributed to the ferromagnetic properties of small liquid droplets. Pis’ma Zh. éksp. Teor. Fiz. 67, No. 9, 686–689 (10 May 1998) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   
6.
Nonisothermal crystallization kinetics of polypropylene (PP) nanocomposite reinforced with 0.5 wt. % single-walled carbon nanotubes (SWNT) was characterized by differential scanning calorimetry at five different cooling and heating rates. The Avrami, Ozawa, and Seo-Kim kinetic models were used to describe the nonisothermal crystallization of the polymer and its nanocomposite. The addition of nano-filler, in general, improved the crystallization rate and increased the peak crystallization temperature of the nanocomposite as compared to PP. The results show that the Avrami and Seo-Kim models are suitable under different cooling rate conditions but that the Ozawa model is inappropriate for the nanocomposite. Equilibrium melting temperatures, derived from the linear Hoffman-Weeks equation, were shown to decrease in the nanocomposite. Additional analysis was performed based on the Thomson-Gibbs, Lauritzen-Hoffman, and Dobreva-Gutzowa theories, which were applied to take into account the lamellar thickness, nucleating agent, and nucleating activity of the nanocomposite in the nonisothermal melt crystallization process.  相似文献   
7.
Journal of Solid State Electrochemistry - The Li[Li0.2Ni0.13-x + y/3Co0.13-x + y/3Mn0.54-x + y/3]Al x Zr y O2 was synthesized via conventional solution...  相似文献   
8.
9.
10.
The characteristics of lithium adsorption on Si-decorated graphene are investigated using first-principles density functional theory calculations. It is found that the Si atom is strongly adsorbed at the bridge site of the C–C bond with binding energy of about ?26.75 kcal/mol. We show that Si decorating turns Si:graphene complex into an electron-deficient system and significantly enhances the Li-storage capacity on the graphene. The obtained results indicate that up to eight Li-ions being adsorbed onto the Si-decorated graphene can form the stable complex. It is found, interestingly, that two Si atoms coated onto double-side of the graphene can strongly adsorb sixteen Li-ions. The analyses of electronic structures show a strong interaction between Li-ions and Si-decorated graphene leading to a high exothermicity. The stability of the sixteen Li-ions adsorbed on the Si:graphene system was evaluated with ab initio molecular dynamics simulation which have been carried out at room temperature. Our first-principles results are relevant to identify the potential applications of Si-decorated graphene as superior media for Li-ions storage.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号