首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   5篇
  2013年   1篇
  2004年   2篇
  2003年   2篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
The binding of an anticancer drug (actinomycin D or ACTD) to double-stranded DNA (dsDNA) was studied by means of high-performance liquid chromatography (HPLC). ACTD is an antitumor antibiotic containing one chromophore group and two pentapeptidic lactone cycles that binds dsDNA. Incubations of ACTD with DNA were performed at physiological pH. The complexed and free ligand concentrations of the mixture were quantified at 440 nm from their separation on a size-exclusion chromatographic (SEC) column using the same buffer for the elution and the sample incubation. The DNA and the ACTD-DNA complexes were eluted at the column exclusion volume while the ligand was retained on the support. An apparent binding curve was obtained by plotting the amount emerging at the exclusion column volume against that eluted at free ACTD retention volume. A dissociating effect was evidenced and the binding parameters were significantly different from those obtained at equilibrium by visible absorbance titration. The equilibrium binding parameters determined by absorption spectroscopy were used as starting data in the numerical simulations of the chromatographic process. The results showed a strong dependency of the apparent binding parameters on the reaction kinetics. Finally the comparison of the apparent binding curve obtained from the HPLC experiments and from the numerical simulations permitted an evaluation of the dissociation rate constant (kd = 0.004 s(-1)).  相似文献   
2.
The interaction of ethidium bromide (2,7-diamino-10-ethyl-9-phenylphenanthridinium bromide; EB) with double stranded (ds) calf thymus DNA and thermally denatured single stranded (ss) DNA was studied in solution and at the electrode surface by means of transfer voltammetry using a carbon paste electrode (CPE) as working electrode in 0.2 M acetate buffer, pH 5.0. As a result of intercalation of this dye between the base pairs of dsDNA, the characteristic peak of dsDNA, due to the oxidation of guanine residues, decreased and after a particular concentration of EB a new peak at +0.81 V appeared, probably due to the formation of a complex between dsDNA and EB. The non-intercalated EB gives another peak, but at an increased concentration of the dye. A similar behaviour was observed during the interaction of the dye with ssDNA.Furthermore, the interaction of EB with ds, ss and supercoiled (sc) DNA was studied at the hanging mercury drop electrode (HMDE) surface by means of alternating current voltammetry in 0.3 M NaCl and 50 mM sodium phosphate buffer (pH 8.5) as supporting electrolyte. dsDNA yields a smaller peak at −1.42 V (peak III) compared to the one yielded by ssDNA, since the latter is a relaxed and more accessible form. By addition of EB into the buffer solution an increase of peak III was observed in the dsDNA form as well as in ssDNA resulting from their interaction with EB. Furthermore, the appearance of peak III in covalently closed circular scDNA after exposure to increasing concentrations of EB is a result of the introduction of ‘free ends’ in DNA affecting its structural integrity.  相似文献   
3.
Summary High performance liquid chromatography (HPLC) was used to study the mechanism of formation of polyelectrolyte multilayers on porous silicas. The coatings were produced by alternating the adsorption of positively and negatively charged polymers. The stationary phases formed by adsorbing a single layer, double layers and triple layers were tested by studying the elution behavior of model proteins. The double polymer coating was achieved by adsorbing first a polycation such as hexadimethrine bromide (HB) on the HPLC silica support and then a polyanion such as dextran sulfate (DS) on the cationic layer formed. The retention properties of this support are mainly those of a cation exchanger as the negatively charged proteins were strongly retained while positively charged ones were weakly adsorbed. This work demonstrated the importance of the first underlying layer as the retention behavior of proteins was greatly affected by the properties of this coating. The triple polymer coating was achieved by adsorbing the polycation (HB) on the double layer coating (HB-DS). Its retention behavior was that of an anion exchange support. The HB-DS stationary phase displayed good chromatographic performances, with an adsorbed layer relatively stable. The polyelectrolyte multilayer coating procedure was useful to easily synthesize cation-exchange supports for the separation of basic proteins.  相似文献   
4.
Electrochemical DNA biosensors, based either on carbon paste electrode (CPE) or hanging mercury drop electrode (HMDE) were prepared. These biosensors were used in the study of interaction between double stranded DNA (dsDNA) and single stranded DNA (ssDNA) and acridine orange, a well known DNA intercalator. The different electrochemical behaviors were compared in the article.  相似文献   
5.
The interaction of ethidium bromide (EB) and acridine orange (AO) with double stranded (ds), thermally denatured (ss) and supercoiled (sc) DNA, in solution, was studied by alternating current voltammetry (AC voltammetry) at the hanging mercury drop electrode (HMDE) in 0.3 M NaCl+50 mM sodium phosphate buffer (pH 8.5). Their interaction with DNA is shown to be time dependent and completely different. The changes at peak 2 (peak at −1.20 V) of dsDNA form and the appearance of peak 3 (peak at −1.42 V) in scDNA form are presented as criteria declaring the different mechanism of interaction of EB and AO with DNA. Additionally, the appearance of a new peak at around −0.44 V as a result of DNA and AO interaction, differentiates the studied behaviors. The comparison of the electrochemical behaviors of these compounds highlights the differences in the mechanism of interaction.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号