首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   2篇
物理学   1篇
  2021年   1篇
  2003年   2篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
We have studied the storage and long-range transport of electrons in a porous assembly of weakly coupled ZnO quantum dots permeated with an aqueous and a propylene carbonate electrolyte solution. The number of electrons per ZnO quantum dot is controlled by the electrochemical potential of the assembly; the charge of the electrons is compensated by ions present in the pores. We show with optical and electrical measurements that the injected electrons occupy the S, P, and D type conduction electron levels of the quantum dots; electron storage in surface states is not important. With this method of three-dimensional charge compensation, up to ten electrons per quantum-dot can be stored if the assembly is permeated with an aqueous electrolyte. The screening of the electron charge is less effective in the case of an assembly permeated with a propylene carbonate electrolyte solution. Long-range electron transport is studied with a transistor set-up. In the case of ZnO assemblies permeated with an aqueous electrolyte, two quantum regimes are observed corresponding to multiple tunnelling between the S orbitals (at a low occupation) and P orbitals (at a higher occupation). In a ZnO quantum-dot assembly permeated with a propylene carbonate electrolyte solution, there is a strong overlap between these two regimes.  相似文献   
2.
Journal of Thermal Analysis and Calorimetry - Up-to-date, solar salt (a mixture of 60 mass% NaNO3 and 40 mass% KNO3) is practically the only media for thermal energy storage (TES) in concentrated...  相似文献   
3.
We have studied the optical transitions in artificial atoms consisting of one to ten electrons occupying the conduction levels in ZnO nanocrystals. We analyzed near IR absorption spectra of assemblies of weakly coupled ZnO nanocrystals for a gradually increasing electron number and found four allowed dipole transitions with oscillator strengths in quantitative agreement with tight-binding theory. Furthermore, this spectroscopy provides the single-particle energy separation between the conduction levels of the ZnO quantum dots.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号