首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   12篇
  国内免费   1篇
化学   127篇
数学   3篇
物理学   2篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2015年   6篇
  2014年   3篇
  2013年   6篇
  2012年   7篇
  2011年   13篇
  2010年   5篇
  2009年   5篇
  2008年   8篇
  2007年   8篇
  2006年   12篇
  2005年   11篇
  2004年   6篇
  2003年   6篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1989年   3篇
排序方式: 共有132条查询结果,搜索用时 15 毫秒
1.
Full- [six-dimensional (6-D)] and reduced-dimensional [five-dimensional (5-D)] quantum wave packet calculations have been performed for the title reaction to obtain reaction probabilities deriving from the ground rovibrational states of OH and CO with total angular momentum J = 0. Three potential energy surfaces (PES) are studied, namely, those of Bradley and Schatz (BS), Yu, Muckerman, and Sears (YMS), and Lakin, Troya, Schatz, and Harding (LTSH). 6-D calculations are performed only for the BS PES, while 5-D results are reported for all three PES'. The 6-D results obtained in the present work improve on those previously reported, since a larger vibrational basis and a better representation of the OH and CO bonds has been introduced. In particular, we now employ a generalized Lanczos-Morse discrete variable representation for both the OH and CO vibrations. In a further improvement, the generalized discrete variable representation of the CO vibration is based on different CO intramolecular potentials for the asymptotic and product grids employed in our projection formalism. This new treatment of the vibrational bases allows for a large reduction in computation time with respect to our previous implementation of the wave packet method, for a given level of accuracy. As a result, we have been able to extend the range of collision energies for which we can obtain converged 6-D results to a higher energy (0.8 eV) than was possible before (0.5 eV). The comparison of the new 6-D and previous 5-D results for the BS PES shows good agreement of the general trend in the reaction probabilities over all collision energies considered (0.1-0.8 eV), while our previous 6-D calculation showed reaction probabilities that differed from the 5-D results by up to 10% between 0.5 and 0.8 eV. The 5-D reaction probabilities reveal interesting trends for the different PES'. In particular, at low energies (< 0.2 eV) the LTSH PES gives rise to much larger reactivity than the other PES', while at high energies (> 0.3 eV) its reaction probability decreases with respect to the BS and YMS PES', being more than a factor of 2 smaller at 0.8 eV. A 5-D calculation on a modified version of the LTSH surface shows that the van der Waals interaction in the entrance channel, which is not correctly described in the other PES' is largely responsible for its larger reactivity at low energies. The large difference between the 5-D reaction probabilities for the YMS and LTSH PES' serves to emphasize the importance of the van der Waals interaction for the reactivity at low energies, because most of the stationary point energies on the YMS and LTSH PES are rather similar, being in line with high-level ab initio information.  相似文献   
2.
It is demonstrated that conformationally restricted oligosaccharides can act as acceptors for glycosyltransferases. Correlation of the conformational properties of N-acetyl lactosamine (Galbeta(1-4)GlcNAc, LacNAc) and several preorganized derivatives with the corresponding apparent kinetic parameters of rat liver alpha-(2,6)-sialyltransferase-catalyzed sialylations revealed that this enzyme recognizes LacNAc in a low energy conformation. Furthermore, small variations in the conformational properties of the acceptors resulted in large differences in catalytic efficiency. Collectively, our data suggest that preorganization of acceptors in conformations that are favorable for recognition by a transferase may improve catalytic efficiencies.  相似文献   
3.
A novel approach for the synthesis of various fragments of proteophosphoglycans from Leishmania major and Leishmania mexicana proteophosphoglycans has been developed. These compounds have been obtained by coupling alpha-mannosyl and alpha-N-acetyl-glucosamine phosphoramidite derivatives with the serine hydroxyl of various amino acids and peptides to give, after oxidation with tert-BuOOH, phosphotriesters exclusively as alpha-anomers in good yield. The resulting compounds could be deblocked using conventional methods. Glycophosphorylation of preassembled and properly protected peptides was found to be more efficient for the preparation of proteophosphoglycan fragments than a building block approach strategy using a phosphoglycosylserine derivative.  相似文献   
4.
5.
We report six-dimensional quantum dynamics calculations of the dissociative scattering of molecular hydrogen from the copper111 surface. Two potential energy surfaces are investigated and the results are compared with experiment. Our study completes the preliminary work of Somers et al. [Chem. Phys. Lett. 360, 390 (2002)] and focuses on the role of initial vibrational excitation and on isotopic effects. None of the two investigated potential energy surfaces is found satisfactory: the use of neither potential yields reaction and vibrational excitation probabilities and vibrational efficacies that are in close agreement with experiment. In addition to showing the shortcomings of existing potential energy surfaces we point out an inconsistency in the experimental fits for D2.  相似文献   
6.
7.
We present a novel mechanism for the extraction of metals from aqueous phases to room-temperature ionic liquids (ILs) by use of a high-temperature salt as an extraction agent. The mechanism capitalizes on the fact that charged metal complexes are soluble in ILs; this allows for extraction of charged complexes rather than the neutral species, which are formed by conventional approaches. The use of a well-chosen extraction agent also suppresses the competing ion-exchange mechanism, thus preventing degradation of the ionic liquid. The approach permits the use of excess extractant to drive the recovery of metals in high yield. This work presents both a thermodynamic framework for understanding the approach and experimental verification of the process in a range of different ILs. The method has great potential value in the recovery of metals, water purification and nuclear materials processing.  相似文献   
8.
Developing new green solvents is one of the key subjects in Green Chemistry. Ionic liquids (ILs) and deep eutectic solvents, thus, have been paid great attention to replace current harsh organic solvents and have been applied to many chemical processing such as extraction and synthesis. However, current ionic liquids and deep eutectic solvents have still limitations to be applied to a real chemical industry due to toxicity against human and environment and high cost of ILs and solid state of most deep eutectic solvents at room temperature. Recently we discovered that many plant abundant primary metabolites changed their state from solid to liquid when they were mixed in proper ratio. This finding made us hypothesize that natural deep eutectic solvents (NADES) play a role as alternative media to water in living organisms and tested a wide range of natural products, which resulted in discovery of over 100 NADES from nature. In order to prove deep eutectic feature the interaction between the molecules was investigated by nuclear magnetic resonance spectroscopy. All the tested NADES show clear hydrogen bonding between components. As next step physical properties of NADES such as water activity, density, viscosity, polarity and thermal properties were measured as well as the effect of water on the physical properties. In the last stage the novel NADES were applied to the solubilization of wide range of biomolecules such as non-water soluble bioactive natural products, gluten, starch, and DNA. In most cases the solubility of the biomolecules evaluated in this study was greatly higher than water. Based on the results the novel NADES may be expected as potential green solvents at room temperature in diverse fields of chemistry.  相似文献   
9.
ABSTRACT

Diastereoselective hydroxymethylation of a suitably protected α-D-manno-hexodialdo-1,5-pyranoside with the Grignard reagent derived from (phenyldimethylsilyl)methyl chloride gives, after additional protecting group manipulations, an easy access to one donor and two acceptors of LD-Hepp. The latter derivatives could be applied successfully for the preparation of the disaccharides α-D-GlcpN-(1-7)-L-α-D-Hepp-OMe and L-α-D-Hepp-(1-6)-L-α-D-Hepp-OMe.  相似文献   
10.
Pseudomonas aeruginosa is an opportunistic Gram‐negative bacterium that can cause life‐threatening infections in critically ill and cystic fibrosis patients. The Psl exopolysaccharide of P. aeruginosa offers an attractive serotype‐independent antigen for the development of immunotherapies. Here, the first chemical synthesis of a panel of oligosaccharides derived from the exopolysaccharide of P. aeruginosa by a synthetic strategy that efficiently deals with the stereoselective installation of several β‐mannosides and the formation of a mannoside that is extended by saccharide moieties at C‐1, C‐2, and C‐3 in a crowded 1,2,3‐cis configuration is described. The approach was employed to prepare tetra‐, penta‐, and hexa‐ and decasaccharide part structures. The compounds were employed to define the epitope requirements of several functionally active monoclonal antibodies (mAbs) that can bind three distinct epitopes of Psl (class I, II, and III). The class II mAb reacted potently with each oligosaccharide indicating its epitope resides within the tetrasaccharide and does not require the branched mannoside of Psl. The class III antibody did not bind the tetra‐ or pentasaccharide; however, it did react potently with the hexasaccharide and weakly with the decasaccharide, suggesting a terminal glucoside is required for optimal binding. Unexpectedly, the class I mAb did not bind any of the oligosaccharides indicating that Psl contains a yet to be elucidated sub‐stoichiometric isoform. This study demonstrates that functional activity of a mAb does not only depend on the avidity of binding but also on the location of an epitope within a bacterial polysaccharide. The results also provide a strong impetus to analyze further the structure of Psl to identify the class I epitope, that is expected to provide an attractive target for the development of a synthetic vaccine for P. aeruginosa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号