首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   0篇
  国内免费   1篇
化学   31篇
力学   4篇
数学   2篇
物理学   8篇
  2023年   1篇
  2021年   4篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   5篇
  2013年   8篇
  2012年   1篇
  2011年   4篇
  2010年   5篇
  2009年   2篇
  2008年   5篇
  2007年   2篇
排序方式: 共有45条查询结果,搜索用时 31 毫秒
1.
In this paper, the electrochemical behavior of a carbon paste electrode modified with CdO nanoparticles as a potential electrocatalyst for the reduction of trichloroacetic acid (TCAA) was investigated using cyclic voltammetry and double‐potential step chronoamperometry. The modified electrode showed a great enhancement in cathodic peak current with respect to reduction of TCAA in acidic aqueous solution. Using this increment, a quantitative method was developed for the determination of TCAA in aqueous solution. The detection limit and linear dynamic range of TCAA are 2.3×10?6 M and 2.3×10?4–3×10?6 M, respectively.  相似文献   
2.
A series of poly(l-lactic acid)/poly(ethylene glycol) triblock copolymers with a PLA–PEG–PLA architecture were synthesized by a ring-opening polymerization (ROP) process. The copolymers were characterized by 1H NMR and GPC. The total number average molecular weights were in the range of 4,700–50,000, whereas the degrees of polymerization of the PLA and PEG blocks varied from 15 to 359 and from 68 to 136, respectively. The self-association of these copolymers in aqueous environment was studied by emission fluorescence spectroscopy of anilinonaphthalene probe and the critical association concentration (CAC) of the copolymers was measured. It was found that the micellization process of these copolymers was mainly determined by the length of the hydrophobic LA block, while the length of the hydrophilic PEG block had little effect. Furthermore, the low CAC values of the copolymers suggest that the copolymers form stable supramolecular structures in aqueous solutions.  相似文献   
3.
In this study, swelling behavior and mechanical properties of polyelectrolyte cationic hydrogels of poly((2-dimethylamino) ethyl methacrylate) (PDMAEMA), and poly((2-dimethylamino) ethyl methacrylate-co-butyl methacrylate) (P(DMAEMA-co-BMA)), were investigated. Hydrogels were prepared by free-radical solution copolymerization of DMAEMA and BMA using ethylene glycol dimethacrylate (EGDMA) as the crosslinking agent. Compression-strain measurements were used to analyze the mechanical properties of the hydrogels. It was found that increasing the amount of BMA comonomer in the gel structure increases the compression modulus of the material. The results of mechanical measurements were used to characterize the network structure of the hydrogels, namely the effective crosslinking density (. It was found that exceeds the theoretical crosslinking density (νt) calculated from the initial amount of EGDMA used for hydrogel synthesis. These hydrogels demonstrated dual sensitivity to both pH and temperature. It was shown that the pH-sensitive or temperature-sensitive phase transition behavior of the gels can be changed by changing the temperature or pH of the swelling medium at constant hydrogel composition. Increasing the temperature decreased the transition pH of the pH-sensitive phase transition. On the other hand, increasing the pH of the surrounding medium decreased the transition temperature of the temperature-sensitive phase transition. Incorporation of BMA in the gel structure has a significant effect on the transition point of the gel. Increasing the BMA content reduced the transition pH and temperature of the pH- and temperature-sensitive phase transition, respectively. The similar effect of increasing temperature or BMA content can be explained by the role of hydrophobicity in the phase transition behavior of hydrogels. Finally, the results of equilibrium swelling and compression-strain measurements were used to calculate the polymer-solvent interaction parameters of these hydrogels using the Flory-Rehner equation of equilibrium swelling.  相似文献   
4.
A poly(vinyl chloride) (PVC) membrane sensor for holmium ions was fabricated based on N‐[(Z)‐1‐(2‐thienyl)‐ methylidene]‐N‐[4‐(4‐{[(Z)‐1‐(2‐thienyl)methylidene]amino} phenoxy)phenyl] amine (TPA) as a new ion carrier, acetophenon (AP) as plasticizing solvent mediator and sodium tetraphenyl borate (NaTPB) as an anion excluder. The electrode shows a good selectivity towards Ho3+ ions respect to other inorganic cations, including alkali, alkaline earth, transition and heavy metal ions. The constructed sensor displays a Nernstian behavior (19.5±0.3 mV/decade) over the concentration range of 1.0×10−6 to 1.0×10−2 mol·L−1 with the detection limit of the electrode being 4.6×10−7 mol·L−1 and very short response time (ca. 5 s). It has a useful working pH range of 3.2–9.8 for at least 8 weeks. The electrode was successfully applied as an indicator electrode for the potentiometric titration of a Ho3+ solution with EDTA and holmium determination in some alloys. The proposed sensor accuracy was studied by the determination of Ho3+ in mixtures of three different ions.  相似文献   
5.
6.
Superparamagnetic iron oxide nanoparticles (SPIONs) are promising materials for various biomedical applications including targeted drug delivery and imaging, hyperthermia, magneto-transfections, gene therapy, stem cell tracking, molecular/cellular tracking, magnetic separation technologies (e.g. rapid DNA sequencing), and detection of liver and lymph node metastases. The most recent applications for SPIONs for early detection of inflammatory, cancer, diabetes and atherosclerosis have also increased their popularity in academia. In order to increase the efficacy of SPIONs in the desired applications, especial surface coating/characteristics are required. The aim of this article is to review the surface properties of magnetic nanoparticles upon synthesis and the surface engineering by different coatings. The biological aspects, cytotoxicity, and health risks are addressed. Special emphasis is given to organic and inorganic-based coatings due to their determinant role in biocompatibility or toxicity of the final particles.  相似文献   
7.
8.
In this study, a performance optimization process for a bimetallic micro thermal sensor using the Taguchi quality engineering method is described. Sensor performance is obtained by simulating the theoretical model, which shows the effect of the beam deflection on capacitance during changes in temperature. Optimal parameter combinations are determined using Taguchi experimental design method with at least 90 % confidence level. The level of importance of the parameters on the sensor’s sensitivity is determined using the analysis of signal-to-noise ratio as well as analysis of variance. The improvement in S/N ratio is 29.47 dB, representing an increase of 29.74 times in sensitivity.  相似文献   
9.
10.
The phase separation of (water + salt + polyethylene glycol 15000) systems was studied by cloud-point measurements using the particle counting method. The effect of three kinds of sulphate salt (Na2SO4, K2SO4, (NH4)2SO4) concentration, polyethylene glycol 15000 concentration, mass ratio of polymer to salt on the cloud-point temperature of these systems have been investigated. The results obtained indicate that the cloud-point temperatures decrease linearly with increase in polyethylene glycol concentrations for different salts. Also, the cloud points decrease with an increase in mass ratio of salt to polymer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号