首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
化学   11篇
数学   6篇
物理学   1篇
  2021年   2篇
  2020年   1篇
  2013年   2篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2001年   1篇
  2000年   1篇
  1971年   1篇
  1970年   2篇
  1968年   1篇
  1964年   1篇
  1961年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
Composites prepared from aerosil A380 and liquid crystals (LCs) of 4-n-alkyl-4′-cyanophenyl benzoate type, with four to six carbon atoms in the alkyl chain were investigated by infrared spectroscopy. Their high silica content (of 2–7 g aerosil/1 g of LC) was given by thermogravimetric investigations and allows the observation of a rather thin LC layer on the silica particles. Several surface species onto the external surface of the grains were demonstrated. Arguments are given that monomer and dimer species are present in the bulk cyanophenyl benzoate materials while bulk-like species along with hydrogen-bonded ones coexist in the so-called surface layer of the composites. The main interaction of LC molecules with the aerosil surface is by hydrogen bonding taking place with the involvement of the cyan group. There is a contribution of ester carbonyl group to these surface interactions but this cannot be well quantified.  相似文献   
2.
ABSTRACT

Molecular mobility of cyanophenyl alkylbenzoates (CPnBs) (n = 2, 3, 7 – number of carbon atoms in the alkyl chain) in the bulk and in composites with aerosil A380 is investigated by broadband dielectric spectroscopy, while thermal analysis and infrared spectroscopy were applied to characterise the molecular species. The work completes preliminary results obtained for the members with n = 4 … 6. An interaction by hydrogen bonding, between aerosil surface – OH groups and – CN or ester groups of the CPnB molecules takes place. It slows down the relaxation process as observed for related composites in comparison to the pure materials. The existence of two types of bonding might be the reason that Vogel temperature for the relaxation process in the surface layer does not show the odd-even effect. Temperature dependence of the relaxation rates for composites shows a crossover behaviour from a high to a low temperature regime. Moreover, the temperature dependence of the dielectric strength is unusual. As the loading degree is similar, comparison of the dielectric, spectroscopic and thermal data obtained here and with the results obtained for the composites with n = 4 … 6 can be directly done. Increasing the number of the members of the homologous series confirms and hardens the preliminary conclusions.  相似文献   
3.
We used X-ray phase analysis, IR, X-ray photoelectron, and NMR spectroscopy to characterize a synthesized mesoporous material (Fe,Al)-MCM-41. As a result of a certain combination of structural, acidic, and oxidation–reduction properties of the surface, (Fe,Al)-MCM-41 exhibits catalytic activity in reactions with participation of nitrogen oxides, in particular partial oxidation of propane by nitrogen(I) oxide to isopropanol.  相似文献   
4.
The influence of mobile ions on the results of impedance spectroscopy (dielectric spectroscopy) measurements performed on a liquid crystal cell using the new mathematical model recently described was investigated. This mathematical model reformulates the fundamental equation system of continuity for mobile charge carriers and the Poisson equation using new variables. One makes the following assumptions: ions have different mobilities and diffusion coefficients, there is no generation-recombination process, the equilibrium carrier concentrations are uniform and equal each other, the electrodes are either completely blocking or blocked with adsorption-desorption processes. The final result is the analytical expression of the equivalent admittance for the system, allowing to have a clearer picture of the mobile ions and of the processes that occur at the electrode interface influencing the dielectric behavior.  相似文献   
5.
6.
The kinetics of the photochemical reaction cycle of the bacteriorhodopsin, pharaonis halorhodopsin and proteorhodopsin were determined in H2O and D2O at low and high pH, to get insight in the proton dependent steps of the transport process. While all the steps of the bacteriorhodopsin photocycle at normal pH exhibited a strong isotope effect, the proton uptake step of the photocycle, measured at high pH, became independent of deuterium exchange, making plausible that this step, at low proton concentration, becomes concentration dependent, not mobility dependent. The proton transporting photocycle of the proteorhodopsin at its normal pH (9.5) shows a marked deuterium effect, while at high pH (12.2) this effect almost totally disappears. It was shown earlier that the proton uptake step of the proteorhodopsin is at the rise of the N form. As the proton concentration decreases with rising pH this step becomes the rate limiting, proton concentration dependent step, hiding all the other isotope dependent components. In the case of halorhodopsin in all the chloride, nitrate and proton transporting conditions the photocycle was not strongly affected by the deuterium exchange. While in the cases of the first two ions this seems normal, the absence of the deuterium effect in the case of the proton transporting photocycle was a puzzle. The only plausible explanation is that in the presence of azide the halorhodopsin transports not the proton, but a negatively charged ion the OH-, the mass and mobility of which is only slightly influenced by the deuterium exchange.  相似文献   
7.
Small heat shock proteins (sHsps) are a large family of proteins with monomeric molecular weight of 12-43 kDa, present within the prokaryotic and eukariotic cell as large oligomeric complexes, ranging in size from 200-800 kDa. Unlike the high molecular weight Hsps, which are involved in protein folding in vivo, under normal conditions, sHsps play an important role in protecting organism from stress. SHsps share an evolutionarily conserved sequence of 80-100 amino acids, located in the C-terminal region, and called "alpha-crystallin domain"; its role in subunits interactions has been recently underlined by site-directed spin labeling studies and by fluorescence resonance energy transfer data. The N-terminal region, preceding the alpha-crystallin domain, is variable in length and amino acid sequence, contributing to structural diversity between different sHsps and having a role in multimerization. The alpha-Crystallin domain is followed by C-terminal extension, a polar structure, involved in protein solubility, which share no sequence homology. Expression of sHsps is induced in response to various kinds of stress including heat shock, oxidative stress, osmostress, or ischemia, but some sHsps are expressed constitutively under physiological conditions. In vitro, sHsps selectively bind and stabilize proteins and prevent their aggregation at elevated temperatures in an ATP-independent way and protect enzymes against heat-induced inactivation. Our own studies focused on the chaperone-like activity of alpha-crystallin, the major protein component of vertebrate lens, using another system than heat-induced aggregation. Our data demonstrated that alpha-crystallin specifically protects enzymes against inactivation by different posttranslational modifications such as glycation, carbamylation and aldehyde binding, and also reactivates GuHCl-denatured enzymes. Complex formation between alpha-crystallin and the denatured enzymes, was suggested as a mechanism of protection.  相似文献   
8.
Homocysteine thiolactone-induced protein modification (HTPM) is a unique post-translational protein modification that is recognized as an emergent biomarker for cardiovascular disease. HTPM involves the site-specific acylation of proteins at lysine residues by homocysteine thiolactone (HTL) to produce protein homocystamide, which has been found at elevated levels in patients with coronary heart disease. Herein, we report the development of a novel gold nanoparticle (GNP) biochemical sensor for detection of protein homocystamide in an in vitro serum protein-based model system. Human serum albumin (HSA) and human sera were subjected to HTPM in vitro to produce HSA-homocystamide or serum protein homocystamide, respectively, which was subsequently treated with citrate-capped GNPs. This GNP sensor typically provided instantaneous visual confirmation of HTPM in the protein model systems. Transmission electron microscopy images of the GNPs in the presence of HSA-homocystamide suggest that modification-directed nanoparticle assembly is the mechanism by which the biochemical sensor produces a colorimetric signal. The resultant nanoparticle-protein assembly exhibited excellent thermal and dilutional stability, which is expected for a system stabilized by chemisorption and intermolecular disulfide bonding. The sensor typically provided a linear response for modified human sera concentrations greater than approximately 5 mg/mL. The calculated limit of detection and calibration sensitivity for the method in human sera were 5.2 mg/mL and 13.6 AU . (microg/mL)-1, respectively.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号