首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   1篇
化学   9篇
晶体学   1篇
力学   4篇
数学   16篇
物理学   2篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   4篇
  2002年   1篇
  2000年   3篇
  1999年   1篇
  1997年   1篇
  1996年   2篇
  1993年   1篇
  1969年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
1.
Fuhrman DL 《Talanta》1969,16(1):121-124
Perchlorate present in chlorate solutions is determined gravimetrically as tetraphenylphosphonium perchlorate after destruction of chlorate by addition of hydrochloric acid. Interference of Fe(III) and Cr(III) is prevented by complexing with tarartic acid. Replicate analyses of a sodium chlorate solution containing NaClO(3), NaCl, Na(2)Cr(2)O(7), and 390 ppm NaClO(4) showed 405 ppm NaClO(4) (standard deviation 19 ppm, 12 results).  相似文献   
2.
We prove hypercontractivity of nonsymmetric Ornstein-Uhlenbeck semigroups in Hilbert spaces, using direct probabilistic arguments. Our results imply exponential convergence at infinity for the semigroup. We show by examples that in our setting logarithmic Sobolev inequalities do not hold in general  相似文献   
3.

Background  

Growth hormone (GH) plays an incompletely understood role in the development of the central nervous system (CNS). In this study, we use transgenic mice expressing a growth hormone antagonist (GHA) to explore the role of GH in regulating postnatal brain, spinal cord and body growth into adulthood. The GHA transgene encodes a protein that inhibits the binding of GH to its receptor, specifically antagonizing the trophic effects of endogenous GH.  相似文献   
4.
This paper presents a new spectral model for solving the fully nonlinear potential flow problem for water waves in a single horizontal dimension. At the heart of the numerical method is the solution to the Laplace equation which is solved using a variant of the σ ‐transform. The method discretizes the spatial part of the governing equations using the Galerkin method and the temporal part using the classical fourth‐order Runge‐Kutta method. A careful investigation of the numerical method's stability properties is carried out, and it is shown that the method is stable up to a certain threshold steepness when applied to nonlinear monochromatic waves in deep water. Above this threshold artificial damping may be employed to obtain stable solutions. The accuracy of the model is tested for: (i) highly nonlinear progressive wave trains, (ii) solitary wave reflection, and (iii) deep water wave focusing events. In all cases it is demonstrated that the model is capable of obtaining excellent results, essentially up to very near breaking.  相似文献   
5.
We study a stochastic optimal control problem for a partially observed diffusion. By using the control randomization method in Bandini et al. (2018), we prove a corresponding randomized dynamic programming principle (DPP) for the value function, which is obtained from a flow property of an associated filter process. This DPP is the key step towards our main result: a characterization of the value function of the partial observation control problem as the unique viscosity solution to the corresponding dynamic programming Hamilton–Jacobi–Bellman (HJB) equation. The latter is formulated as a new, fully non linear partial differential equation on the Wasserstein space of probability measures. An important feature of our approach is that it does not require any non-degeneracy condition on the diffusion coefficient, and no condition is imposed to guarantee existence of a density for the filter process solution to the controlled Zakai equation. Finally, we give an explicit solution to our HJB equation in the case of a partially observed non Gaussian linear–quadratic model.  相似文献   
6.
We study a finite-dimensional continuous-time optimal control problem on finite horizon for a controlled diffusion driven by Brownian motion, in the linear-quadratic case. We admit stochastic coefficients, possibly depending on an underlying independent marked point process, so that our model is general enough to include controlled switching systems where the switching mechanism is not required to be Markovian. The problem is solved by means of a Riccati equation, which turned out to be a backward stochastic differential equation driven by the Brownian motion and by the random measure associated with the marked point process.  相似文献   
7.
8.
Large enhancements have been observed in the sub-barrier fusion cross sections for Ti+Ni systems in our previous studies. Coupled channel calculations incorporating couplings to 2+ and 3 states failed to explain these enhancements completely. A possibilty of transfer channels contributing to the residual enhancements had been suggested. In order to investigate the role of relevant transfer channels, measurements of one- and two-nucleon transfer were carried out for 46,48Ti+61Ni systems. The present paper gives the results of these studies.  相似文献   
9.
Let A and B be generators of analytic semigroups in a Banach space. Under some conditions on the commutator of the resolvents of A and B, already considered in the literature and not implying relative boundedness, we prove that the closure of A+B (or a proper extension of it) also generates an analytic semigroup, and we characterize interpolation spaces related to it. As a tool, we use approximation and interpolation results for multivalued linear operators.  相似文献   
10.
Silks represent some of the most precious ancient and historic textile artefacts in collections worldwide.Their optimum preservation demands an appreciation of their characteristics.One important concern,especially with regard to ancient Chinese silks,is whether the fabrics have been degummed.Silks with remnant sericin gum coating the fibroin fibres would require different conservation protocol.In previous research on aged silks,the presence of sericin has been inferred from amino acid analysis of hydrolysa...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号