首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
化学   22篇
物理学   1篇
  2012年   1篇
  2011年   4篇
  2010年   4篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   4篇
  2004年   2篇
排序方式: 共有23条查询结果,搜索用时 62 毫秒
1.
This paper demonstrates that capillary electrophoresis (CE) can be employed for characterizing the sizes of nanometer-scale gold particles. We characterized the gold nanoparticles by effecting CE separation using a buffer of SDS (70 mM) and 3-cyclohexylamino-1-propanesulfonic acid (CAPS; 10 mM) at pH 11.0 and an applied voltage of 18 kV and obtained a linear relationship (R2 > 0.99) between electrophoretic mobilities and size for nanoparticles whose diameters fall in the regime from 5.0 ± 0.5 to 41.2 ± 3.3 nm; the relative standard deviations of these electrophoretic mobilities are <0.8%. We evaluated the feasibility of employing these separation conditions for the size characterization by of gold nanoparticle samples that were synthesized by a rapid microwave heating method. We confirmed that this CE method is a valid one for size characterization by comparing the results obtained by CE with those provided by scanning electron microscopy (SEM); a good correlation exists between these two techniques. Our results demonstrate that CE can be employed to accelerate the analysis of the sizes of nanomaterials.  相似文献   
2.
In this study, we used size-exclusion chromatography (SEC) to evaluate the sizes of Au and Au/Pd core/shell nanoparticles (NPs) that had been subjected to thermal treatment, with the eluted NPs monitored through diode array detection (DAD) of the surface plasmon (SP) absorption of the NPs. In the absence of an adequate stabilizer, thermal treatment resulted in longer retention times for the Au NPs and shorter retention times for the Au/Pd core/shell NPs in the SEC chromatograms. Thus, thermal treatment influenced the sizes of these Au and Au/Pd core/shell NPs, through digestive ripening and Ostwald-type growth, respectively. In addition, the trends in the SP absorption phenomena of the NPs in the eluted samples, as measured using DAD, were consistent with the trends of their size variations, as measured from their elution profiles. In the presence of 3A-amino-3A-deoxy-(2AS,3AS)-??-cyclodextrin (H2N-??-CD) as a stabilizer, the retention times and SP absorptions of the eluted Au and Au/Pd NP samples remained constant. Thus, H2N-??-CD is a good stabilizer against size variation duration the thermal treatment of Au and Au/Pd core/shell NPs. A good correlation existed between the sizes obtained using SEC and those provided by transmission electron microscopy. Therefore, this SEC strategy is an effective means of further searching for suitable stabilizers for NPs, especially those exposed to harsh reaction conditions (e.g., in catalytic reactions).  相似文献   
3.
This paper describes how size exclusion chromatography (SEC) can be used to rapidly characterize Au/Pd core/shell nanoparticles (NPs). We monitored the sizes of Au/Pd core/shell NPs by effecting SEC separation using a mobile phase of 10 mM sodium dodecyl sulfate (SDS); the plot of retention time with respect to the standard size of the Au NPs was linear (R 2 = 0.991) for diameters falling in the range from 12.1 to 59.9 nm; for five consecutive runs, the relative standard deviations of these retention times were less than 0.4%. Under the optimized separation conditions, we found that the addition of the surfactant SDS stabilized the Au/Pd core/shell NP samples. In addition, SEC analysis revealed that the sizes of the Au/Pd core/shell NPs could be controlled via modification of the rate of addition of the reducing agent and the use of adequate volumes of the seed and shell precursor metal ion solutions. When using these conditions to analyze the Au/Pd core/shell NPs produced through seed-assisted synthesis, a good correlation existed between the sizes determined through SEC and transmission electron microscopy. Our results suggest that SEC is a useful technique for monitoring the sizes of NPs and nanomaterials in general.  相似文献   
4.
Liu  Fu-Ken 《Chromatographia》2012,75(19):1099-1105

This paper reports the use of size-exclusion chromatography (SEC) to assess the size stabilization of Au nanoparticles (NPs) in the presence of salt and organic solvent. In the absence of an adequate stabilizer for the Au NP solution, the presence of salt (NaCl) or an organic solvent (MeOH) resulted in the near disappearance of the signal of the Au NPs in the elution spectra after SEC separation, as a result of the Au NPs forming larger agglomerates under such conditions. In contrast, when the Au NPs were capped with an adequate stabilizer [i.e., 3A-amino-3A-deoxy-(2AS,3AS)-β-cyclodextrin (H2N-β-CD)], the elution time of the signal for the Au NPs and their elution spectra after SEC separation were barely affected by the presence of salt or organic solvent. Thus, H2N-β-CD is a good stabilizer against the coagulation of Au NPs in the presence of salt or organic solvent. In addition, this study confirms that SEC—with its short analysis times, low operating costs, automated operation, and in situ analysis—is highly applicable for the rapid analysis of Au NPs.

  相似文献   
5.
Two spherical gold nanoparticles (diameters 5.3 and 38 nm, respectively) were used to appraise the separation performance of various mobile-phase additives in size-exclusion chromatography (SEC). The three additives were sodium citrate (SC), sodium chloride (NaCl), and sodium dodecylsulfate (SDS). The problem of adsorption on gold nanoparticles occurs when SC and NaCl are used as mobile-phase additives. In contrast, the adsorption problem is overcome by using SDS as mobile-phase additive; furthermore, SDS prevents gold nanoparticles from coagulating during separation. This paper demonstrates the feasibility of using SDS as mobile-phase additive in SEC for size separation of gold nanoparticles and also demonstrates how SEC may be used to investigate interactions between a mobile-phase additive and gold nanoparticles.  相似文献   
6.
Liu  Fu-Ken  Chang  Yu-Cheng 《Chromatographia》2011,74(11):767-775

In this study, we used size-exclusion chromatography (SEC) to evaluate the sizes of Au and Au/Pd core/shell nanoparticles (NPs) that had been subjected to thermal treatment, with the eluted NPs monitored through diode array detection (DAD) of the surface plasmon (SP) absorption of the NPs. In the absence of an adequate stabilizer, thermal treatment resulted in longer retention times for the Au NPs and shorter retention times for the Au/Pd core/shell NPs in the SEC chromatograms. Thus, thermal treatment influenced the sizes of these Au and Au/Pd core/shell NPs, through digestive ripening and Ostwald-type growth, respectively. In addition, the trends in the SP absorption phenomena of the NPs in the eluted samples, as measured using DAD, were consistent with the trends of their size variations, as measured from their elution profiles. In the presence of 3A-amino-3A-deoxy-(2AS,3AS)-β-cyclodextrin (H2N-β-CD) as a stabilizer, the retention times and SP absorptions of the eluted Au and Au/Pd NP samples remained constant. Thus, H2N-β-CD is a good stabilizer against size variation duration the thermal treatment of Au and Au/Pd core/shell NPs. A good correlation existed between the sizes obtained using SEC and those provided by transmission electron microscopy. Therefore, this SEC strategy is an effective means of further searching for suitable stabilizers for NPs, especially those exposed to harsh reaction conditions (e.g., in catalytic reactions).

  相似文献   
7.
Fu-Ken Liu 《Chromatographia》2008,68(1-2):81-87
In this paper, it is demonstrated that size-exclusion chromatography (SEC) with SDS (10 mM) as the mobile phase can be used to rapidly determine the sizes of Au nanoparticles (NPs). It was found that standard particles at sizes ranging from 12.1 to 79.1 nm eluted in a linear manner with respect to the elution time. The reproducibility of the separation over the entire range of the calibration curve was high; the relative standard deviations of the elution times were less than 0.3%. Next, the separation conditions to characterize the sizes of Au NPs prepared through seed-assisted synthesis were employed. Using this approach, it was found that the rate of addition of the reducing agent influenced the sizes of the final products; for example, rapid addition of the reducing agent resulted in polydisperse Au NP products. SEC analysis revealed that the presence of NaOH in the synthesis medium decreased the sizes of the Au NPs dramatically. When using SEC to analyze Au NPs produced through seed-assisted synthesis, a good correlation existed between the sizes obtained using SEC and those provided by transmission electron microscopy (TEM). Based on these findings, SEC appears to be an efficient and accurate tool for characterizing the sizes of NPs fabricated through seed-assisted synthesis.  相似文献   
8.
Nanometer-sized gold particles—gold nanoparticles (Au NPs)—are attracting a great deal of attention for their use in various technologies, including catalysis, optical and electronic devices, and separation science. In the emerging field of nanomaterials, the design, synthesis, and characterization of nanostructures are critical features because the manipulation of these structures has a direct effect on their resulting macroscopic properties. Nanostructures fabricated in layers on surfaces—for example, through self-assembly processes—have several potential applications in separation science. This review provides an introduction to the characterizations of Au NPs using size exclusion chromatography, high performance liquid chromatography (HPLC), and electrophoresis, and their self-assembly onto solid supports for analyses based on HPLC, gas chromatography, and capillary electrophoresis. In addition, sample concentration strategies involving the use of self-assembly approaches for surface modification of Au NPs are also discussed.  相似文献   
9.
This paper describes the feasibility of employing capillary electrophoresis (CE) to separate silver particles in nanometer regimes. We have found that the addition of an anionic surfactant, sodium dodecyl sulphate (SDS), to the running electrolyte prevents coalescence of the silver particles during the process, which improves the separation performance; the concentration of SDS required for optimal silver nanoparticle separation is ca. 20 mM. By monitoring the electropherograms using a diode-array detection (DAD) system, we have also investigated the separation of suspended silver nanorods with respect to their shapes. Our results demonstrate that the combination of CE and DAD is a powerful one for the separation and characterization of various silver nanoparticles.  相似文献   
10.
This paper describes employing capillary electrophoresis (CE) for the separation of gold colloids in nanometer-size regimes. Adding sodium dodecylsulfate (SDS) surfactant to the running buffer enhances the capability of CE to separate gold nanoparticles. We found that the optimized separation conditions involved SDS (70 mM), 3-cyclohexylamoniuopropanesulfonic acid (CAPS) buffer (10 mM), pH 10.0, and an applied voltage of 20 kV. We propose that the charged surfactants associate onto the surface of the gold nanoparticles and cause a change in the charge-to-size ratio of gold nanoparticle, which is a function of the surface area of nanoparticle and the surfactant concentration of running electrolyte. At high concentrations of the surfactant in the running electrolyte—i.e., when the surface of the gold nanoparticles is fully occupied with SDS—a linear relationship exists between the electrophoretic mobility and nanoparticles having diameters ranging from 5.3 to 38 nm. Based on the results of separating the 5.3 and 19 nm nanoparticles, we estimate that the size resolution (Rs=1.0) is 5.0 nm. The relative standard deviations of the electrophoretic mobilities of the 5.3 and 19 nm gold nanoparticles are 0.97 and 0.54%, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号