首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
化学   17篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  1999年   1篇
排序方式: 共有17条查询结果,搜索用时 18 毫秒
1.
Bio-based films were prepared from LiCl/DMAc solutions containing sisal cellulose esters (acetates, butyrates and hexanoates) with different degrees of substitution (DS 0.7–1.8) and solutions prepared with the cellulose esters and 20 wt% sisal cellulose. A novel approach for characterizing the surface morphology utilized field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and contact angle analysis. XPS and ToF-SIMS were a powerful combination while investigating both the ester group distribution on the surface and effects of cellulose content on the film. The surface coverage by ester aliphatic chains was estimated using XPS measurements. Fibrous structures were observed in the FE-SEM images of the cellulose and bio-based films, most likely because the sisal cellulose chains aggregated during dissolution in LiCl/DMAc. Therefore, the cellulose aggregates remained after the formation of the films and removal of the solvent. The XPS results indicated that the cellulose loading on the longer chain cellulose esters films (DS 1.8) increased the surface coverage by ester aliphatic chains (8.2 % for butyrate and 45 % for hexanoate). However, for the shortest ester chains, the surface coverage decreased (acetate, 42 %). The ToF-SIMS analyses of cellulose acetate and cellulose hexanoate films (DS 1.8) revealed that the cellulose ester groups were evenly distributed across the surface of the films.  相似文献   
2.
The acylation of three cellulose samples by acetic anhydride, Ac2O, in the solvent system LiCl/N,N-dimethylacetamide, DMAc (4 h, 110 °C), has been revisited in order to investigate the dependence of the reaction efficiency on the structural characteristics of cellulose, and its aggregation in solution. The cellulose samples employed included microcrystalline, MCC; mercerized cotton linters, M-cotton, and mercerized sisal, M-sisal. The reaction efficiency expresses the relationship between the degree of substitution, DS, of the ester obtained, and the molar ratio Ac2O/AGU (anhydroglucose unit of the biopolymer); 100% efficiency means obtaining DS = 3 at Ac2O/AGU = 3. For all celluloses, the dependence of DS on Ac2O/AGU is described by an exponential decay equation: DS = DSo − Ae−[(Ac2O/AGU)/B]; (A) and (B) are regression coefficients, and DSo is the calculated maximum degree of substitution, achieved under the conditions of each experiment. Values of (B) are clearly dependent on the cellulose employed: B(M-cotton) > B(M-sisal) > B(MCC); they correlate qualitatively with the degree of polymerization of cellulose, and linearly with the aggregation number, Nagg, of the dissolved biopolymer, as calculated from static light scattering measurements: (B) = 1.709 + 0.034 Nagg. To our knowledge, this is the first report on the latter correlation; it shows the importance of the physical state of dissolved cellulose, and serves to explain, in part, the need to use distinct reaction conditions for MCC and fibrous celluloses, in particular Ac2O/AGU, time, temperature.  相似文献   
3.
4.
Commercially available cellulose (Avicell PH101) was successfully acylated under homogeneous solution conditions by the following procedure: 2.0 g of cellulose were stirred with 75 mL of N,N‐dimethylacetamide for 1 h at 150°C, 3.5 g of LiCl were added, the temperature was raised to 170°C, ca. 18.5 mL of the solvent were distilled and the suspension was cooled to room temperature and stirred overnight. The temperature of the clear cellulose solution was raised to 110°C, kept at that temperature for 1 h, an acid anhydride was added and the solution stirred at 110°C for additional 4 h. Acetates, propionates, butyrates, and acetate/propionate mixed ester were prepared with excellent control of the degree of substitution, DS, 1 to 3 for acetates, 2 and 3 for propionates and butyrates, and 3 for acetate/propionate. The degree of polymerization of cellulose is negligibly affected under these reaction conditions. The distribution of the acetyl moiety among the three OH groups of the anhydroglucose unit shows a preference for the C6 position. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1357–1363, 1999  相似文献   
5.
Enzymatic saccharification of sisal cellulosic pulp has been investigated. Brazil leads global production of lignocellulosic sisal fiber, which has high cellulose content, an important property for producing glucose via saccharification. Hence, sisal pulp can be a good alternative for use in biorefineries. Prior to enzymatic hydrolysis, the starting pulp [85 ± 2% α-cellulose, 15 ± 2% hemicelluloses, 1.2 ± 2% insoluble lignin, viscometric average molar mass (MMvis) 19,357 ± 590 g mol?1, crystallinity index (CI) 74%] was pretreated with alkaline aqueous solution (mercerization, 20 g of pulp L?1, 20% NaOH, 50 °C). The changes in the properties of the cellulosic pulp during this pretreatment were analyzed [α-cellulose content, MMvis, CI, pulp fiber dimensions, and scanning electron microscopy (SEM)]. The unmercerized and mercerized (97.4 ± 2% α-cellulose, 2.6 ± 2% hemicelluloses, 0.3 ± 0.1% insoluble lignin, MMvis 94,618 ± 300 g mol?1, CI 68%) pulps were subjected to enzymatic hydrolysis (48 h, commercial cellulase enzymes, 0.5 mL g?1 pulp); during the reactions, aliquots consisting of unreacted pulp and liquor were withdrawn from the medium at certain times and characterized (unreacted pulp: MMvis, CI, fiber dimensions, SEM; liquor: high-performance liquid chromatography). The changes in pulp properties observed during mercerization facilitated access of enzymes to cellulose chains, and the yield of the hydrolysis reaction increased from 50.2 (unmercerized pulp) to 89.0% (mercerized pulp). These initial results for enzymatic hydrolysis of sisal pulp indicate that it represents a good alternative biomass for bioethanol production.  相似文献   
6.
The enzymatic hydrolysis of cotton raw cellulose (RC) samples, sieved RC samples through meshes <100 (CS1), 100–200 (C12), 200–400 (C24), mercerized RC samples (M-C), freeze-dried RC (RC-FD) samples, microcrystalline cellulose Avicel, bacterial cellulose (BC), raw sisal pulp and mercerized sisal pulp (S-M) was performed at cellulose-to-cellulase mass ratios of 1,000:1, 699:1, 400:1, 100:1 and 10:1. The index of crystallinity and water sorption values were quantified for all samples. The morphological features were analyzed by means of scanning electron microscopy (SEM). For cellulose-to-cellulase mass ratio of 100:1 and 10:1, the maximum hydrolysis extents of cellulose samples after 24 h reaction could not be correlated with their physical characteristics. However, hydrolyses of samples with large water sorption values were faster than those with lower water sorption values. The hydrolysis efficiency decreased when the cellulose-to-cellulase mass ratio was greater than 400:1; under this condition a remarkable dependence of the hydrolysis yield on the type of cellulosic sample was observed. The water sorption ability could be directly correlated with the hydrolysis extent, except for RC-FD and BC samples, which presented the lowest values. In the former, freeze-drying has led to pore collapse, with concomitant reduction of the amount of adsorbed water. For the latter sample, the densely packed structure made the water sorption slower than in all other samples. Despite of this fact, the presence of nanofibrils on the surface of BC (as detected by SEM) improved the enzyme adsorption, indicating that analysis by complementary techniques should be performed in order to predict the enzymatic hydrolysis efficiency.  相似文献   
7.
This study was undertaken to evaluate both the properties of cellulose acetate films as a function of their degree of substitution (DS) and the possibility of generating reinforcements during film preparation. Sisal was selected for the entire study, among other reasons, because it is a rapidly growing source of cellulose. Cellulose acetates with various DS values were prepared in a homogeneous medium (dimethylacetamide/lithium chloride as the solvent system) and characterized. In DMAc/LiCl, cellulose and cellulose acetate films (mixed or not mixed with sisal cellulose) were successfully prepared and characterized. The films with high DS values exhibited lower hygroscopicity, a distinct morphology (scanning electron microscopy images), and lower tensile strength. In some cases, the films prepared from acetates/cellulose exhibited higher tensile strength and/or storage modulus than the acetate films. This result suggested a reinforcing action of the auto-organized cellulose chains that enabled the generation of both a film and reinforcement in a one-pot process.  相似文献   
8.
The present work is inserted into the broad context of the upgrading of lignocellulosic fibers. Sisal was chosen in the present study because more than 50% of the world’s sisal is cultivated in Brazil, it has a short life cycle and its fiber has a high cellulose content. Specifically, in the present study, the subject addressed was the hydrolysis of the sisal pulp, using sulfuric acid as the catalyst. To assess the influence of parameters such as the concentration of the sulfuric acid and the temperature during this process, the pulp was hydrolyzed with various concentrations of sulfuric acid (30–50%) at 70 °C and with 30% acid (v/v) at various temperatures (60–100 °C). During hydrolysis, aliquots were withdrawn from the reaction media, and the solid (non-hydrolyzed pulp) was separated from the liquid (liquor) by filtering each aliquot. The sugar composition of the liquor was analyzed by HPLC, and the non-hydrolyzed pulps were characterized by viscometry (average molar mass), and X-ray diffraction (crystallinity). The results support the following conclusions: acid hydrolysis using 30% H2SO4 at 100 °C can produce sisal microcrystalline cellulose and the conditions that led to the largest glucose yield and lowest decomposition rate were 50% H2SO4 at 70 °C. In summary, the study of sisal pulp hydrolysis using concentrated acid showed that certain conditions are suitable for high recovery of xylose and good yield of glucose. Moreover, the unreacted cellulose can be targeted for different applications in bio-based materials. A kinetic study based on the glucose yield was performed for all reaction conditions using the kinetic model proposed by Saeman. The results showed that the model adjusted to all 30–35% H2SO4 reactions but not to greater concentrations of sulfuric acid. The present study is part of an ongoing research program, and the results reported here will be used as a comparison against the results obtained when using treated sisal pulp as the starting material.  相似文献   
9.
The (bio)degradation of polyolefins can be accelerated by modifying the level of crystallinity or by incorporation of carbonyl groups by adding pro-oxidants to masterbatches or through exposure to ultraviolet irradiation. In this work, we sought to improve the degradation of PP by adding cobalt, calcium or magnesium stearate to Ecoflex®, PP or Ecoflex®/PP blends. The effect of the pro-oxidants on biodegradability was assessed by examining the mechanical properties and fluidity of the polymers. PP had higher values for tensile strength at break and Young's modulus than Ecoflex®, and the latter had little influence on the properties of PP in Ecoflex®/PP blends. However, the presence of pro-oxidants (except for calcium) reduced these properties. All of the pro-oxidants enhanced the fluidity of PP, a phenomenon that facilitated polymer degradation at high temperatures.  相似文献   
10.
Two types of Sisal cellulose were studied as starting material for homogeneous acylation in the solvent dimethyl sulfoxide (DMSO)/tetrabutylammonium fluoride trihydrate (TBAF). The native Sisal cellulose investigated contains 14% hemicellulose (mainly composed of xylose) as confirmed by 13C-NMR spectroscopy in DMSO-d6/TBAF and HPLC analysis after complete polymer degradation. Alkali treatment of Sisal cellulose decreases the amount of hemicellulose, the degree of polymerization and the crystallinity. Both Sisal cellulose samples can be dissolved in DMSO/TBAF after treatment at elevated temperature. GPC measurements showed high aggregation in the solution. Different homogeneous acylation reactions using carboxylic acid anhydrides and vinyl esters were carried out, showing a pronounced tendency of the anhydride towards hydrolysis in the solvent. This disadvantage can be diminished by decreasing the amount of the salt hydrate (TBAF trihydrate) or by a distillative removal of the majority of water. A strong interaction of the polymer with the water in the solvent was observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号