首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   1篇
化学   23篇
  2022年   1篇
  2015年   1篇
  2013年   1篇
  2012年   5篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2001年   1篇
  2000年   2篇
  1993年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
1.
Oxime ligands are able to form stable binuclear species with copper(II) ions in aqueous solution. They also have a strong tendency to decrease the Mn+/(n-1)+ redox potentials of the central ions. Ligands possessing the hydroxyimino groups together with other powerful sigma-donor groups can be very efficient chelating agents able to facilitate the stabilisation of high oxidation states of 3d-metals. Here we report the synthesis, structural characterization and redox behaviour of mononuclear and binuclear complexes based on hydroxyiminoamide tetradentate open-chain ligands. In all mononuclear anionic complexes the central atom is situated in a square-planar surrounding of four nitrogen atoms. This pseudo-macrocyclic conformation is due to the presence of short intramolecular hydrogen bonds uniting the cis-oximate oxygen atoms. The square-planar surrounding of the strong sigma-donors facilitates efficient stabilization of the trivalent state of copper and nickel ions. In cyclic voltammetry studies the quasi-reversible processes M2+-->M3+ can be observed. In the binuclear complexes the coordinatively saturated octahedral ion M[prime or minute] is bound to the two oxygen atoms of the bridging oximate groups and the four nitrogen atoms of the tetradentate ligand tren. Two metal ions (M and M') are linked by the double cis-oximate bridge and are incorporated in a six-membered bimetallic chelate ring. Metallamacrocycle formation leads to certain changes in the structural parameters of the binuclear complexes as compared to those observed in the mononuclear species. Also the study of the electrochemical activity of binuclear complexes has shown important differences in their redox behaviour as compared to their mononuclear precursors.  相似文献   
2.
A hexanuclear copper(ii) complex with a figure-of-eight strip topology is formed by metal-directed self-assembly of tritopic ligand L, bis-bidentate glycine hydroxamic acid and Cu(ii) ions in a 2:2:6 ratio.  相似文献   
3.
A series of cobalt(III) anionic complexes with hydroxyimino analogs of dipeptides – oximes of pyruvylglycine, pyruvyl-l-alanine, pyruvyl-l-methionine and pyruvyl-l-phenylalanine (H2pamaco, amac = amino acid) of composition Cat3[Co(H−1pamaco)2] · nH2O (Cat – a monovalent metal cation) has been synthesized and investigated by UV–Vis, CD and 1H NMR spectroscopy. It was established that for the two latter ligands, non-racemic mixtures of two diastereomeric complexes were formed as a result of synthesis. In comparison with the complex containing pyruvyl-l-alanine, in which the relative content of R (C2) and S (C2) isomers is approximately equal, the presence of bulky substituents in the molecules of Met- and Phe-containing ligands results in a significant discrimination in formation of the S (C2) isomer. This conclusion was drawn upon analysis of the CD and NMR spectral data as well as from molecular modeling. The relative content of the diastereomers was evaluated on the basis of NMR data. The protonation constants of the ligands have been determined in aqueous solution by glass electrode potentiometry, whereas their interactions with Co(II) were studied both under argon and oxygen atmosphere.  相似文献   
4.
The title compound, [Ni(C2H8N2)3][Ni(C3HN3O2)2]·H2O, appears to be a modular associate consisting of two complex counter‐ions, containing bivalent nickel as the central atom in both cases, and a solvent water mol­ecule. The NiII ion in the complex cation lies on the C2 crystallographic axis. Its coordination environment is formed by six N atoms of three ethyl­ene­diamine (en) mol­ecules, representing a distorted octa­hedral geometry. The NiII ion in the complex anion occupies a position at the center of inversion. It exhibits a distorted square‐planar coordination geometry formed by four N atoms belonging to the deprotonated oxidoimine and amide groups of the two doubly charged 2‐cyano‐2‐(oxidoimino)acetamidate anions, situated in trans positions with respect to each other. In the crystal packing, the complex anions are linked by water mol­ecules via hydrogen bonds between the amide O atoms and water H atoms, forming chains translated along the a direction. The [Ni(en)3]2+ cations fill empty spaces between the translational chains, connecting them by hydrogen bonds between the oxime and amide O atoms of the anions and the amine H atoms of the cations, forming layers along the ac plane. The water mol­ecules provide connection between layers through N atoms of the cations, thus forming a three‐dimensional modular structure.  相似文献   
5.
6.
The title compound, (2,6‐diacetylpyridine bis{[2‐(hydroxyimino)propanoyl]hydrazone}(2−))nickel(II) dimethyl sulfoxide solvate monohydrate, [Ni(C15H17N7O4)]·C2H6OS·H2O, represents the first example of square‐planar N4 coordination via N atoms with four different functions, namely amide, azomethine, hydroxyimino and pyridine. The coordination polyhedron of the central Ni atom has a slightly distorted square‐planar geometry. The 2,6‐diacetylpyridine bis{[2‐(hydroxyimino)propanoyl]hydrazone} ligand forms one six‐ and two five‐membered chelate rings, and a pseudo‐chelate ring through an intramolecular hydrogen bond with an amide group as donor and a deprotonated hydroxyimino group as acceptor, resulting in a pseudomacrocyclic arrangement.  相似文献   
7.
A new polynucleating oxime-containing Schiff base ligand, 2-hydroxyimino- N'-[1-(2-pyridyl)ethylidene]propanohydrazone (H pop), has been synthesized and fully characterized. pH potentiometric, electrospray ionization mass spectrometric, and spectrophotometric studies of complex formation in H 2O/DMSO solution confirmed the preference for polynuclear complexes with 3d metal ions. Single-crystal X-ray diffraction analyses of [Ni 4( pop) 4(HCOO) 4].7H 2O ( 1), [Cu 4( pop-H) 4(HCOOH) 4].H 2O ( 2), and [Cu 4( pop-H) 4(H 2O) 4].9H 2O ( 3) indicated the presence of a [2 x 2] molecular grid structure in all three compounds but distinct configurations of the cores: a head-to-tail ligand arrangement with overall S 4 symmetry of the grid in the Cu (2+) complexes as opposed to a head-to-head ligand arrangement with (noncrystallographic) C 2 grid symmetry for the Ni (2+) complex. A cryomagnetic study of 3 revealed intramolecular ferromagnetic exchange between copper ions in the grid, while in 1, antiferromagnetic interactions between the metal ions were observed.  相似文献   
8.
The diversity of spin crossover (SCO) complexes that, on the one hand, display variable temperature, abruptness and hysteresis of the spin transition, and on the other hand, are spin‐sensitive to the various guest molecules, makes these materials unique for the detection of different organic and inorganic compounds. We have developed a homochiral SCO coordination polymer with a spin transition sensitive to the inclusion of the guest 2‐butanol, and these solvates with (R)‐ and (S)‐alcohols demonstrate different SCO behaviours depending on the chirality of the organic analyte. A stereoselective response to the guest inclusion is detected as a shift in the temperature of the transition both from dia‐ to para‐ and from para‐ to diamagnetic states in heating and cooling modes respectively. Furthermore, the Mössbauer spectroscopy directly visualizes how the metallic centres in a chiral coordination framework differently sense the interaction with guests of different chiralities.  相似文献   
9.
An unprecedented encapsulation of an exogenous sodium ion by iron(III) tris(hydroxamate)s was observed upon crystallization of an iron(III) complex with isonicotinylhydroxamic acid. The sodium cation is bound by bridging coordination of the amide oxygen atoms from two mononuclear iron(III) fac-tris(hydroxamate)s.  相似文献   
10.
A trinuclear metal complex of general formula (L-H)M3(Mf)2 represents the first allosteric low molecular weight catalyst. L is a polyaza ligand having a tetradentate and two bidentate metal binding sites, Ms is a "structural" (allosteric) metal, and Mf are functional (catalytic) metals which interact with a substrate. In mononuclear [(L-H)Ms]+ complexes [(L-H)Cu(MeOH)]ClO4 (1a). [(L-H)Cu]NO3 x 2H2O (1b), [(L-H)Ni]ClO4 x 4H2O (2), and [(L-H)Pd]ClO4 x 2H2O (3), prepared from L and M2+ salts, the metal is strongly bound by an in-plane N4-coordination (confirmed by X-ray crystal structure determination of la). Formation of trinuclear complexes [(L-H)MsCu2]5+, with two functional Cu2+ ions coordinated to the bidentate sites of L, was evidenced in solution by photometric titration and by isolation of [(L-H)Cu3][PO4][ClO4]2 x 9H2O (4). The trinuclear complexes catalyze the cleavage of RNA-analogue 2-(hydroxypropyl)-p-nitrophenyl phosphate (HPNP), an activated phosphodiester. From a kinetic analysis of the cleavage rate at various HPNP concentrations, parameters KHPNP (the equilibrium constant for binding of HPNP to [(L-H)MsCu2]5+ and kcat (first-order rate constant for cleavage of HPNP when bound to the catalyst) were derived: KM= 170 (Ms= Cu2+), 340 (Ms = Ni2+), 2,600 (Ms = Pd2+) M(-1), kcat = 17 x 10(-3) (Ms= Cu2+) 3.1 x 10(-3) (Ms=Ni2+), 0.22 x 10(-3) (Ms = Pd2+) s(-1). Obviously, the nature of the allosteric metal ion Ms strongly influences both substrate affinity and reactivity of the catalyst [(L-H)MsCu2]5+. Our interpretation of this observation is that subtle differences in the ionic radius of Ms and in its tendency to distort the N4-Ms coordination plane have a significant influence on the conformation of the catalyst (i.e., preorganization of functional Cu2+ ions) and thus on catalytic activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号