首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   326篇
  免费   19篇
化学   343篇
物理学   2篇
  2023年   1篇
  2021年   6篇
  2020年   13篇
  2019年   9篇
  2018年   2篇
  2017年   2篇
  2016年   10篇
  2015年   10篇
  2014年   9篇
  2013年   24篇
  2012年   22篇
  2011年   32篇
  2010年   6篇
  2009年   16篇
  2008年   24篇
  2007年   20篇
  2006年   16篇
  2005年   15篇
  2004年   5篇
  2003年   15篇
  2002年   6篇
  2001年   12篇
  2000年   6篇
  1999年   4篇
  1998年   5篇
  1997年   7篇
  1996年   2篇
  1995年   8篇
  1994年   2篇
  1993年   5篇
  1992年   6篇
  1991年   8篇
  1990年   2篇
  1986年   5篇
  1985年   1篇
  1984年   5篇
  1983年   1篇
  1982年   3篇
排序方式: 共有345条查询结果,搜索用时 0 毫秒
1.
2.
Complexes of W(CO)(5) with neutral diatomic pnictogen ligands N(2), P(2), As(2), Sb(2), and Bi(2) and anionic Group 14 ligands Si(2) (2-), Ge(2) (2-), Sn(2) (2-), and Pb(2) (2-) coordinated in both side-on and end-on fashion have been optimized by using density functional theory at the BP86 level with valence sets of TZP quality. The calculated bond energies have been used to compare the preferential binding modes of each respective ligand. The results were interpreted by analyzing the nature of the interaction between the ligands and the metal fragment using an energy partitioning method. This yields quantitative information regarding the strength of covalent and electrostatic interactions between the metal and ligand, as well as the contributions by orbitals of different symmetry to the covalent bonding. Results show that all the ligands studied bind preferentially in a side-on coordination mode, with the exception of N(2), which prefers to coordinate in an end-on mode. The preference of the heavier homologues P(2)-Bi(2) for binding in a side-on mode over the end-on mode in the neutral complexes [(CO)(5)WE(2)] comes mainly from the much stronger electrostatic attraction in the former species. The energy difference between the side-on and end-on isomers of the negatively charged complexes with the ligands Si(2) (2-), Ge(2) (2-), Sn(2) (2-), and Pb(2) (2-) is much less and it cannot be ascribed to a particular bonding component.  相似文献   
3.
The structural and thermodynamic properties of the donor-acceptor (DA) complexes of Group 13 metal halides (MX3) with ethylenediamine and their decomposition products have been studied theoretically at the B3LYP/LANL2DZ(d,p) level of theory. Gas-phase dissociation into various components and HX elimination reactions are considered. Both processes are endothermic but favored by entropy. Complexes of 2:1 composition are predicted to be stable in the gas phase up to 640-1000 K. It is found that complexation with the second acceptor molecule lowers the HX elimination enthalpy; in turn, HX elimination increases DA bonding with a second MX3 molecule. Exceptionally high values of the dissociation enthalpies (310-390 kJ mol(-1)) and HX elimination reactions (360-420 kJ mol(-1)) of the amido compounds MX2NHC2H4NH2 and MX2NHC2H4NHMX2 make them important intermediates in the decomposition processes. Dissociation reactions of the complexes are more favorable than HX elimination reactions; however, the subsequent oligomerization and cyclization processes of coordinationally unsaturated amido and imido compounds may facilitate HX elimination. Since HI elimination reactions are predicted to be the least endothermic, and aluminum-containing compounds have the strongest M-N dissociation enthalpies, it is expected that compounds based on aluminum iodide are promising objects for experimental studies.  相似文献   
4.
Quantum chemical DFT calculations using the B3LYP functionals have been carried out for the electronically unsaturated 16 VE five-coordinate osmium boryl-complexes [(PH3)2(CO)ClOs-BR2] and the 18 VE six-coordinate complexes [(PH3)2(CO)2ClOs-BR2] with BR2 = BH2, BF2, B(OH)2, B(OHC=CHO), and Bcat (cat = catecholate O2C6H4). The bonding situation of the Os-BR2 bond was analyzed with the help of the NBO partitioning scheme. The Os-B bond dissociation energies of the 16 VE complexes are very high, and they do not change very much for the different boryl ligands. The 18 VE complexes have only slightly lower bond energies than the 16 VE species. The Os-B bond in both classes of compounds is provided by a covalent sigma-bond which is polarized toward osmium and by strong charge attraction. Os-->B pi-donation is not important for the Os-B binding interactions, except for the Os-BH2 complexes. The stability of the boryl complexes [Os]-BR2 comes mainly from B<--R pi-donation, which is clearly higher than the Os-->B pi-donation. The intraligand charge distribution of the BR2 group changes little when the Os-B bond is formed, except for BH2. The CO ligand in [(PH3)2(CO)2ClOs-BR2] which is trans to BR2 has a relatively weak bond to the osmium atom.  相似文献   
5.
1,3-Dimethylated hydrocarbon segments occur frequently as structural elements in polyketide natural products. The (13)C NMR chemical shifts of a series of model compounds containing such segments can be well reproduced by a combination of molecular mechanics and SOS-DFPT/IGLO calculations. (13)C NMR chemical shifts are calculated on MM3 geometries and are Boltzmann weighted according to the MM3 energies. On the basis of the resulting thermally averaged chemical shifts, all diastereomers of the model compounds can be unequivocally distinguished. Significant differences in chemical shifts occur at methyl groups and methylene groups that are adjacent to a single stereogenic center. The method is applied to predict the relative configuration of two stereocenters in the side chains of two natural products, sambutoxin and the bradykinin inhibitor L-755,897.  相似文献   
6.
Quantum chemical calculations using gradient-corrected (B3LYP) density functional theory have been carried out to investigate the mechanism of the oxidative cleavage of alkenes by ruthenium tetraoxide. The initial reaction of the tetraoxide with the olefin occurs via a [3+2] cycloaddition as in the case of osmium tetraoxide. The results clearly show that the bond cleavage does not take place at the primary adduct, but much later in the reaction path. After the formation of the ruthenium(VI)dioxo-2,5-dioxolane, the reaction proceeds with the addition of a second olefin to yield ruthenium(IV)-bis(2,5-dioxolane), which in turn becomes oxidized first to rutheniumoxo(VI)-bis(2,5-dioxolane) 6(Ru) and then to ruthenium(VIII)-dioxo-bis(2,5-dioxolane) 7(Ru). Only in complexes containing the metal center in the formal oxidation state +VIII are low activation barriers for C-C bond cleavage and exothermic formation of carbonyl compounds as products calculated. The lowest activation barrier, DeltaH(++) = 2.5 kcal/mol, is calculated for the C-C bond breaking reaction of 7(Ru) which is predicted as the pivotal intermediate of the oxidation reaction. The calculations of the oxidation reaction with OsO(4) show that those reactions where the oxidation state of the metal increases have larger activation barriers for M = Ru than for M = Os, while reactions which reduce the oxidation state have a lower activation barrier for ruthenium compounds. Also, reactions which increase the oxidation state of the metal are in the case of M = Os more exothermic than for M = Ru. In this work, all important points of the potential energy surface (PES) are reported, and the complete catalytic cycle for the oxidative cleavage of olefins by ruthenium tetraoxide is presented.  相似文献   
7.
The equilibrium structures and vibrational frequencies of the iron complexes [Fe(CN)(x)(CO)(y)](q) (x = 0-6 and y = 0-5) have been calculated at the BP86 level of theory. The nature of the Fe-CN and Fe-CO has been analyzed with an energy partitioning method. The calculated Fe-CO bond lengths are in good agreement with the results of X-ray structure analysis whereas the Fe-CN bonds are calculated somewhat longer than the experimental values. The theoretically predicted vibrational frequencies of the C-O stretching mode are always lower and the calculated CN(-) frequencies are higher than the observed fundamental modes. The results of the bonding analysis suggest that the Fe-CO binding interactions have approximately 55% electrostatic character and approximately 45% covalent character. There is a significant contribution of the pi orbital interaction to the Fe-CO covalent bonding which increases when the complexes become negatively charged. The strength of deltaE(pi) may even be larger than deltaE(sigma). The Fe-CN(-) bonds have much less pi character. The calculated binding energy of the Fe-CO pi-interactions correlates very well with the C-O stretching frequencies.  相似文献   
8.
2‐Iminoimidazolines — Strong Nitrogen Bases als Ligands in Inorganic Chemistry Due to the tendency of the 5‐membered cyclic fragment to accept a positive charge which yields an ylide type bonding situation, 2‐iminoimidazolines are strong nitrogen bases. They can serve as neutral ligands being 2+2 electron donors. Deprotonation leads to the anions which are potential 2+4 electron donors. We describe first the synthesis and characterization of the title compound 2‐imino‐1, 3‐dimethylimidazoline (ImNH, 8 ) and its anion 9 . Next we demonstrate their properties as ligands in complexes of main group elements and transition metals. In a third chapter we describe attempts to functionalize iminoimidazolines with the goal to create neutral ligands that coordinate in a semistable fashion. On this way we want to make a contribution to the chemistry of complex compounds directed towards catalysis.  相似文献   
9.
Quantum chemical calculations by using density functional theory at the B3LYP level have been carried out to elucidate the reaction course for the addition of ethylene to [OsO2(CH2)2] (1). The calculations predict that the kinetically most favorable reaction proceeds with an activation barrier of 8.1 kcal mol(-1) via [3+2] addition across the O=Os=CH2 moiety. This reaction is -42.4 kcal mol(-1) exothermic. Alternatively, the [3+2] addition to the H2C=Os=CH2 fragment of 1 leads to the most stable addition product 4 (-72.7 kcal mol(-1)), yet this process has a higher activation barrier (13.0 kcal mol(-1)). The [3+2] addition to the O=Os=O fragment yielding 2 is kinetically (27.5 kcal mol(-1)) and thermodynamically (-7.0 kcal mol(-1)) the least favorable [3+2] reaction. The formal [2+2] addition to the Os=O and Os=CH2 double bonds proceeds by initial rearrangement of 1 to the metallaoxirane 1 a. The rearrangement 1-->1 a and the following [2+2] additions have significantly higher activation barriers (>30 kcal mol(-1)) than the [3+2] reactions. Another isomer of 1 is the dioxoosmacyclopropane 1 b, which is 56.2 kcal mol(-1) lower in energy than 1. The activation barrier for the 1-->1 b isomerization is 15.7 kcal mol(-1). The calculations predict that there are no energetically favorable addition reactions of ethylene with 1 b. The isomeric form 1 c containing a peroxo group is too high in energy to be relevant for the reaction course. The accuracy of the B3LYP results is corroborated by high level post-HF CCSD(T) calculations for a subset of species.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号