首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   5篇
化学   36篇
力学   1篇
物理学   1篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2014年   3篇
  2012年   1篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2008年   4篇
  2006年   1篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  1999年   2篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1990年   1篇
  1983年   1篇
排序方式: 共有38条查询结果,搜索用时 31 毫秒
1.
A mean-field dynamic density functional theory for the phase behavior of concentrated weakly charged block polyelectrolyte solutions is developed, using the Donnan membrane equilibrium approach to account for electrostatic interactions. In this limit all long-range electrostatic interactions are canceled and the net charge density in any region on a coarse-grained scale is zero. The phase diagram of a model triblock polyelectrolyte in solution as a function of the charge of the solvophilic block and the solvent concentration is established. Different mesoscopic structures (lamellar, bicontinuous, hexagonal, micellar, and dispersed coexisting phases) are formed depending on the copolymer charge asymmetry. It is found that upon changing the charge of the solvophilic copolymer block the polyelectrolyte solution does not follow the lyotropic sequence of phases of this polymer. Upon increase in the charge of the solvophilic blocks, changes in copolymer morphology take place by means of change in curvature of polymeric domains.  相似文献   
2.
A mean-field dynamic density functional theory is used to describe a phase diagram of concentrated solutions of weakly charged flexible block polyelectrolytes in a film. Electrostatics is taken into account by applying the local electroneutrality constraint (the Donnan membrane equilibrium approach). In the Donnan limit it is assumed that a salt added to the solution perfectly screens long-range electrostatic interactions. The phase diagram of a solution of a triblock polyelectrolyte in a film as a function of the solvent concentration and the charge of the polyelectrolyte (solvophilic) block is calculated for a given film thickness. The phase behavior of the block polyelectrolyte film arises from the interplay between surface-induced alignment and the electrostatically-driven structure formation. The observed mesoscopic structures (lamellar, perforated lamellar, cylindrical, micellar, and mixed phases) are oriented parallel to the surfaces for the considered case of morphologies unfrustrated by the film thickness. Structures with connections between parallel layers (bicontinuous, etc.) are not formed. As a result of surface-induced ordering, the region of ordered phases in a film is wider than in bulk and the phase boundary between ordered and disordered phases is more diffuse. As in the case of unconfined block polyelectrolyte solution, the solution in a film does not follow the lyotropic sequence of phases of such a block copolymer upon increase in the charge of the polyelectrolyte block. Upon changing the charge of the solvophilic copolymer block, transformations of copolymer morphology take place via change in curvature of polymeric domains. Due to confinement of a polyelectrolyte film, no swelling of solvophilic domains is observed.  相似文献   
3.
Flavoprotein oxidases are a diverse class of biocatalysts, most of which catalyze the oxidation of C? O, C? N, or C? C bonds. Flavoprotein oxidases that are known to catalyze the oxidation of C? S bonds are rare, being limited to enzymes that catalyze the oxidative cleavage of thioethers. Herein, we report that various flavoprotein oxidases, previously thought to solely act on alcohols, also catalyze the oxidation of thiols to thiocarbonyls. These results highlight the versatility of enzymatic catalysis and provide a potential biocatalytic route to reactive thiocarbonyl compounds, which have a variety of applications in synthetic organic chemistry.  相似文献   
4.
Bacterial trans-acyltransferase polyketide synthases (trans-AT PKSs) are multimodular megaenzymes that biosynthesize many bioactive natural products. They contain a remarkable range of domains and module types that introduce different substituents into growing polyketide chains. As one such modification, we recently reported Baeyer–Villiger-type oxygen insertion into nascent polyketide backbones, thereby generating malonyl thioester intermediates. In this work, genome mining focusing on architecturally diverse oxidation modules in trans-AT PKSs led us to the culturable plant symbiont Gynuella sunshinyii, which harbors two distinct modules in one orphan PKS. The PKS product was revealed to be lobatamide A, a potent cytotoxin previously only known from a marine tunicate. Biochemical studies show that one module generates glycolyl thioester intermediates, while the other is proposed to be involved in oxime formation. The data suggest varied roles of oxygenation modules in the biosynthesis of polyketide scaffolds and support the importance of trans-AT PKSs in the specialized metabolism of symbiotic bacteria.  相似文献   
5.
Bacterial trans‐acyltransferase polyketide synthases (trans‐AT PKSs) are multimodular megaenzymes that biosynthesize many bioactive natural products. They contain a remarkable range of domains and module types that introduce different substituents into growing polyketide chains. As one such modification, we recently reported Baeyer–Villiger‐type oxygen insertion into nascent polyketide backbones, thereby generating malonyl thioester intermediates. In this work, genome mining focusing on architecturally diverse oxidation modules in trans‐AT PKSs led us to the culturable plant symbiont Gynuella sunshinyii, which harbors two distinct modules in one orphan PKS. The PKS product was revealed to be lobatamide A, a potent cytotoxin previously only known from a marine tunicate. Biochemical studies show that one module generates glycolyl thioester intermediates, while the other is proposed to be involved in oxime formation. The data suggest varied roles of oxygenation modules in the biosynthesis of polyketide scaffolds and support the importance of trans‐AT PKSs in the specialized metabolism of symbiotic bacteria.  相似文献   
6.
7.
8.
We present a new and efficient method for determining optimal configurations of a large number (N) of interacting particles. We use a coarse-grained stochastic Langevin equation in the overdamped limit to describe the dynamics of this system and replace the standard mobility by an effective space dependent inverse Hessian correlation matrix. Due to the analogy of the drift term in the Langevin equation and the update scheme in Newton's method, we expect accelerated dynamics or improved convergence in the convex part of the potential energy surface Phi. The stochastic noise term, however, is not only essential for proper thermodynamic sampling but also allows the system to access transition states in the concave parts of Phi. We employ a Broyden-Fletcher-Goldfarb-Shannon method for updating the local mobility matrix. Quantitative analysis for one and two dimensional systems shows that the new method is indeed more efficient than standard methods with constant effective friction. Due to the construction, our effective mobility adapts high values/low friction in configurations which are less optimal and low values/high friction in configurations that are more optimal.  相似文献   
9.
Computer simulations have been performed for electric field induced parallel‐perpendicular lamellar phase transition in the presence of electrodes. The simulations are based on the dynamic density functional theory. Here we provide the extension of earlier work in two dimensions (2D) to three dimensions (3D). The result is a vivid picture of the transitions through defect creation and collision.

Observed change in lamellar alignment with applied electric field.  相似文献   

10.
We present an innovative, multiscale computational approach to probe the behaviour of polymer–clay nanocomposites (PCNs). Our modeling recipe is based on 1) quantum/force‐field‐based atomistic simulation to derive interaction energies among all system components; 2) mapping of these values onto mesoscopic bead–field (MBF) hybrid‐method parameters; 3) mesoscopic simulations to determine system density distributions and morphologies (i.e., intercalated versus exfoliated); and 4) simulations at finite‐element levels to calculate the relative macroscopic properties. The entire computational procedure has been applied to two well‐known PCN systems, namely Nylon 6/Cloisite 20A and Nylon 6/Cloisite 30B, as test materials, and their mechanical properties were predicted in excellent agreement with the available experimental data. Importantly, our methodology is a truly bottom‐up approach, and no “learning from experiment” was needed in any step of the entire procedure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号