首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   2篇
化学   23篇
晶体学   1篇
力学   4篇
物理学   8篇
  2021年   1篇
  2019年   3篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2003年   1篇
  2001年   2篇
  2000年   5篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1977年   1篇
  1975年   3篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
1.
A series of chiral phosphine-phosphite ligands 1-6 have been synthesized and used in the enantioselective palladium-catalyzed reaction of rac-1,3-diphenyl-2-propenyl acetate with dimethyl malonate as nucleophile. Ligands 1a, 2, 3, 5a, 6a, and 6b have been synthesized starting from racemic tert-butylphenylphosphinoborane. The use of dynamically resolved Li phosphide (-)-sparteine provided the optically pure ligands. Crystals of the allylpalladium (6a) complex were obtained, suitable for X-ray crystal structure determination. The X-ray crystal structure of the allylpalladium (6a) complex revealed a longer palladium-carbon bond distance trans to the phosphine moiety indicating that the attack of the nucleophile takes place at the carbon trans to the phosphine moiety. This was confirmed by the fact that the phosphine moiety did not affect the enantioselectivity directly. Under mild reaction conditions, enantioselectivities up to 83% were obtained (25 degrees C) with ligand 1e. Systematic variation of the ligand bridge and the phosphite moiety showed that the configuration of the product is controlled by the atropisomerism of the biphenyl substituent at the phosphite moiety. The conformation of the biphenyl group, in turn, is controlled by the substituent at the chiral carbon in the bridge. Ligands with large bite angles yielded higher enantioselectivities.  相似文献   
2.
Well-crystallized kaolinite (K) was initially reacted at 60 degrees C with a water/dimethylsulfoxide (DMSO) mixture and the resulting intercalation derivative (K-DMSO) was characterized by powder X-ray diffractometry (PXRD), thermal analysis (simultaneous TG and DSC), and Fourier-transformed infrared spectroscopy (FTIR). Benzamide crystals were then melted with the K-DMSO derivative at 140 degrees C for 4 days, when a gradual displacement of DMSO by benzamide was observed within the interlayer spacing of the modified kaolinite. The resulting material, after extensive washing with acetone, was characterized and compared to the results obtained previously for the K-DMSO composite. Benzamide intercalation proceeded by gradual displacement of DMSO molecules until completion. The structural stabilization of the K-BZ derivative was explained through the establishment of hydrogen bonds between the carbonyl oxygen atoms of the intercalated benzamide and aluminol groups present at the surface of the kaolinite layer. The interlamellar spacing of K-BZ was shown to be possibly occupied by benzamide molecules that were located at a 68 degrees orientation in relation to the layer surface. Unlike most intercalation molecules such as DMSO, variations in the interplanar spacing of kaolinite were consistent with the nonkeying of any other part of the molecule between the aluminosilicate interlayers. Copyright 2000 Academic Press.  相似文献   
3.
4.
5.
The character of the ion dynamics in crystalline cryolite, Na(3)AlF(6), a model double perovskite-structured mineral, has been examined in computer simulations using a polarizable ionic potential obtained by force-fitting to ab initio electronic structure calculations. NMR studies, and conductivity measurements, have indicated a high degree of mobility, in both Na(+) ion diffusion and reorientation of the AlF(6) octahedral units. The simulations reproduce the low-temperature (tilted) crystal structure and the existence of a transition to a cubic structure at elevated temperatures, in agreement with diffraction measurements, though the calculated transition temperature is too low. The reorientational dynamics of the AlF(6) octahedra is shown to consist of a hopping motion between the various tilted positions of the low-temperature form, even above the transition temperature. The rate of reorientation estimated by extrapolation to the temperature régime of the NMR measurements is consistent with the experimental data. In addition, we report a novel cooperative "tilt-swapping" motion of the differently tilted sublattices, just below the transition temperature. The perfect crystals show no Na(+) diffusion, in apparent disagreement with observation. We argue, following previous analyses of the cryolite phase diagram, that the diffusion observed in the experimental studies is a consequence of defects that are intrinsic to the thermodynamically stable form of cryolite. By introducing defects into the simulation cell, we obtain diffusion rates that are consistent with the NMR and conductivity measurements. Finally, we demonstrate a link between diffusion of the Na(+) ions and the reorientation of AlF(6) units, though the correlation between the two is not very strong.  相似文献   
6.
Enolate additions to chiral N-sulfonyloxaziridines providing enantiomerically enriched α-hydroxy carbonyl compounds is a reaction of importance, yet a clear understanding of the factors governing stereoinduction in these transformations remains ambiguous. This is despite, previous computational studies, one by Bach et al. employing truncated model systems exploring oxygen atom transfer to an unsubstituted lithium enolate and another by our own group. In clarifying this reactivity we report here a computational study examining oxygen atom transfer from 1-S-(+)-(10-camphorsulfonyl)oxaziridine, viz., archetypal Davis chiral oxaziridine to substituted Li, Na, K enolates offering improved mechanistic understanding. From this investigation, a revised model is offered revealing the metal cation, chelation effects and sterics as decisive stereocontrolling factors in enolate additions to chiral N-sulfonyloxaziridines affording enantiomerically enriched α-hydroxy carbonyl compounds.  相似文献   
7.
In this paper, a modification of the diffusion model for room acoustics is proposed to account for sound transmission between two rooms, a source room and an adjacent room, which are coupled through a partition wall. A system of two diffusion equations, one for each room, together with a set of two boundary conditions, one for the partition wall and one for the other walls of a room, is obtained and numerically solved. The modified diffusion model is validated by numerical comparisons with the statistical theory for several coupled-room configurations by varying the coupling area surface, the absorption coefficient of each room, and the volume of the adjacent room. An experimental comparison is also carried out for two coupled classrooms. The modified diffusion model results agree very well with both the statistical theory and the experimental data. The diffusion model can then be used as an alternative to the statistical theory, especially when the statistical theory is not applicable, that is, when the reverberant sound field is not diffuse. Moreover, the diffusion model allows the prediction of the spatial distribution of sound energy within each coupled room, while the statistical theory gives only one sound level for each room.  相似文献   
8.
Quantifying the diffusive transport of large molecules in avascular cartilage tissue is important both for planning potential pharamacological treatments and for gaining insight into the molecular-scale structure of cartilage. In this work, the diffusion coefficients of gadolinium-DTPA and Gd-labeled versions of four proteins-lysozyme, trypsinogen, ovalbumin, and bovine serum albumin (BSA) with molecular weights of 14,300, 24,000, 45,000, and 67,000, respectively-have been measured in healthy and degraded calf cartilage. The experimental technique relies on the effect of the paramagnetic on the relaxation properties of the surrounding water, combined with the time course of a 1-dimensional spatial profile of the water signal in the cartilage sample. The enhanced technique presented here does not require a prior measurement of the relaxivity of the paramagnetic compound in the sample of interest. The data are expressed as the ratio of the diffusion coefficient of a compound in cartilage to its diffusion coefficient in water. For healthy cartilage, this ratio was 0.34 +/- 0.07 for Gd-DTPA, the smallest compound, and fell to 0.3 +/- 0.1 for Gd-lysozyme, 0.08 +/- 0.04 for Gd-trypsinogen, and 0.07 +/- 0.04 for Gd-ovalbumin. Gd-BSA did not appear to enter healthy cartilage tissue beyond a surface layer. After the cartilage had been degraded by 24-h trypsinization, these ratios were 0.60 +/- 0.03 for Gd-DTPA, 0.40 +/- 0.08 for Gd-lysozyme, 0.42 +/- 0.09 for Gd-trypsinogen, 0.16 +/- 0.14 for Gd-ovalbumin, and 0.11 +/- 0.05 for Gd-BSA. Thus, degradation of the cartilage led to increases in the diffusion coefficient of up to fivefold for the Gd-labeled proteins. These basic transport parameters yield insights on the nature of pore sizes and chemical-matrix interactions in the cartilage tissue and may prove diagnostically useful for identifying the degree and nature of damage to cartilage.  相似文献   
9.
Foy GP  Pacey GE 《Talanta》1996,43(2):225-232
A method for the direct determination of ATP that exhibits reasonable sensitivity, and responds to very few interferants, has been developed. The chelation-enhanced fluorescence between N-(anthracen-9'-yl methyl)tris(3-aminopropyl) amine and adenosine 5'-triphosphate is utilized in this determination. The method was tested in batch and flow-injection analysis (FIA) modes. The typical detection limit for FIA determination of ATP is 1 muM, with a linear range of 0.5-100 ppm. A typical relative standard deviation at 20 ppm is 2.3%.  相似文献   
10.
This study is dedicated to the growth of bcc Mn by molecular beam epitaxy, in order to look at the magnetic properties of bcc Mn near room temperature. For this purpose, Mn is deposited on bcc MxV1-x(001) alloy lattices (M = Fe or Nb) for which the lattice spacing is tunable by varying the concentration x. We first show that the parameter of the MxV1-x alloy's buffer layers can be adjusted from 2.95 ? to 3.3 ? depending on x and M. Three different structures in Mn films grown on these buffer layers are observed depending on the in-plane spacing of the initial MxV1-x lattice. Thick Mn films are always found to grow epitaxially in the Mnstructure. For moderate thicknesses larger than 4 atomic planes, Mn grows in an unidentified structure. Finally, up to four deposited atomic planes, Mn is found to grow in a tetragonal structure close to a bcc one on Fe(001), FexV1-x(001) and NbxV1-x(001) for . This tetragonal structure is shown to be a distorsion of a Mn bcc structure with . Except for ultra-thin Mn films deposited on Fe(001), no macroscopic magnetization is detected in our strained bcc Mn samples. These results are compared to theoretical predictions. Received 21 June 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号