首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   1篇
物理学   4篇
  2018年   1篇
  2014年   1篇
  2010年   1篇
  2009年   1篇
  1999年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
2.
Effects of spatial ordering of molecules on surfaces are commonly utilized to deposit ultra-thin films with a thickness of a few nm. In this review paper, several methods are discussed, that are distinguished from other thin film deposition processes by exactly these effects that lead to self-assembling and self-limiting layer growth and eventually to coatings with unique and fascinating properties and applications in micro-electronics, optics, chemistry, or biology. Traditional methods for the formation of self-assembled films of ordered organic molecules, such as the Langmuir-Blodgett technique along with thermal atomic layer deposition (ALD) of inorganic molecules are evaluated. The overview is complemented by more recent developments for the deposition of organic or hybrid films by molecular layer deposition. Particular attention is given to plasma assisted techniques, either as a preparative, supplementary step or as inherent part of the deposition as in plasma enhanced ALD or plasma assisted, repeated grafting deposition. The different methods are compared and their film formation mechanisms along with their advantages are presented from the perspective of a plasma scientist. The paper contains lists of established film compounds and a collection of the relevant literature is provided for further reading.  相似文献   
3.
The deposition of carbon-free, silicon oxide (SiOx) films with a non-thermal, RF capillary jet at 27.12 MHz at normal pressure is demonstrated. The gas mixture for film deposition is constituted of argon, oxygen and small admixtures of octamethylcyclotetrasiloxane (Si4O4C8H24, 0.4 ppm). Surface analysis of the deposited films reveals their exceptionally low carbon content. The XPS atom percentage stays at 2% and less, which is near detection limit. The parametric study reported here focuses on the optimization of the deposition process with regard to the chemical and morphological surface properties of the coating by varying oxygen feed gas concentration (0–0.2%) and substrate temperature (10–50 °C).  相似文献   
4.
Electron temperature and electron concentration in the active zone of a miniaturized radio frequency (RF) non-thermal atmospheric pressure plasma jet in argon have been determined using two independent approaches: the spectroscopic measurement of the broadening of Balmer Hb_\beta and Hg_\gamma lines and a time-dependent, spatially two-dimensional fluid model of a single discharge filament. The plasma source has been configured as a capacitively coupled RF jet (27.12 MHz, 8 W generator output power) with two outer ring electrodes around a quartz capillary with diameter of 4.0 mm between which Ar flows at typical rates of 0.3 slm. The discharge has been operated in a self-organized mode, where equidistant, stationary filaments rotate regularly with a constant frequency at the inner wall of the outer capillary. For the purpose of calculating the spectral line broadening different models applicable at higher electron concentration have been evaluated. Resulting electron concentrations are between 2.2 and 3.3 × 1014 cm-3. The calculation according to the line broadening model provides electron temperatures between 20 000 and 30 000 K which is in agreement with the results of the fluid model calculations. Here, a broad radial profile with a maximal value of about 22 000 K in the centre of the column and an electron concentration of about 7 × 1013 cm-3 have been obtained. Moreover, the results of the model calculations reveal a structural change of the filament from the dielectric surface through the sheath to the column. The axially inhomogeneous region has an extension of about 0.5 mm. In the column a concentration of about 1013 cm-3 has been found for the excited argon atoms, whose collisions with electrons represent the most important ionization channel there.  相似文献   
5.
Foest  R.  Basner  R.  Schmidt  M. 《Plasmas and Polymers》1999,4(4):259-268
A technique is described, which supports the plasma mass spectrometry to distinguish possible sources of ion peaks found in the mass spectrum of the neutral gas. The proposed method is based on the measurement of the kinetic energy which the fragment ions gain during dissociative ionization by electron impact inside the ion source of the spectrometer. This approach is of special interest for applications in plasma processes such as plasma assisted deposition or etching techniques where complicated molecules are involved. The principle of the method is demonstrated and discussed for the examination of various fragment ions as CH3 +, C2H2 +, C2H3 +, C2H5 + and CH3O+ in the neutral gas spectrum of an 13.56 MHz rf discharge in an Argon-Tetraethoxysilane (TEOS) mixture.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号