首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   492篇
  免费   31篇
化学   333篇
晶体学   1篇
力学   13篇
数学   61篇
物理学   115篇
  2022年   8篇
  2021年   9篇
  2020年   7篇
  2019年   10篇
  2018年   12篇
  2017年   9篇
  2016年   10篇
  2015年   19篇
  2014年   22篇
  2013年   22篇
  2012年   41篇
  2011年   44篇
  2010年   22篇
  2009年   18篇
  2008年   38篇
  2007年   37篇
  2006年   36篇
  2005年   25篇
  2004年   21篇
  2003年   12篇
  2002年   20篇
  2001年   5篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1996年   5篇
  1993年   2篇
  1992年   5篇
  1991年   4篇
  1990年   3篇
  1989年   5篇
  1986年   4篇
  1985年   5篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1979年   2篇
  1978年   2篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1966年   2篇
  1956年   1篇
  1955年   1篇
  1941年   1篇
  1932年   2篇
  1931年   1篇
排序方式: 共有523条查询结果,搜索用时 656 毫秒
1.
The rate of electron tunneling through normal metal tunnel junctions is calculated for the case of ultrasmall junction capacitances. The so-called Coulomb blockade of electron tunneling at low temperatures is shown to be strongly affected by the external electrical circuit. Under the common experimental condition of a low impedance environment the Coulomb blockade is suppressed for single tunnel junctions. However, a Coulomb gap structure emerges for junctions embedded in a high impedance environment. For a double junction setup a Coulomb blockade of tunneling arises even for low impedance environments due to the charge quantization on the metallic island between the junctions. An approach using circuit analysis is presented which allows to reduce the calculation of tunneling rates in multijunction circuits to those of a single junction in series with an effective capacitance. The range of validity of the socalled local rule and global rule rates is clarified. It is found that the tunneling rate tends towards the global rule rate as the number of junctions is increased. Some specific results are given for a one-dimensional array of tunnel junctions.  相似文献   
2.
3.
4.
Rates of peroxidation of human LDL and rates of consumption of the LDL's alpha-tocopherol (TocH) have been measured at 37 degrees C. Peroxidation was initiated by radicals generated in the aerated aqueous phase at known rates by thermal decomposition of appropriate precursors: superoxide (O2(*-)/HOO(*)) from a hyponitrite and alkylperoxyls (ROO(*), two positively charged, one negatively charged and one neutral) from azo compounds. The efficiencies of escape from the solvent cage of the geminate pair of neutral carbon-centered radicals was found to be 0.1, but it was 0.5 for the three charged radicals, a result attributed to radical/radical Coulombic repulsion within the cage. All four alkylperoxyls initiated and terminated tocopherol-mediated peroxidation (TMP) with about equal efficiency and essentially all of these radicals that were generated were consumed in these two reactions. TMP is a radical chain process, and when initiated by the alkylperoxyls, the rate of LDL peroxidation was faster in the early stages while TocH was present than later, after all of this "antioxidant" had been consumed. In contrast, only about 3-4% of the generated superoxide radicals reacted in any measurable fashion with TocH-containing LDL at pH's from 7.6 to 6.5 and peroxidation was much slower than with a similar rate of generation of alkylperoxyls. After all the TocH had been consumed, LDL peroxidation was negligible at pH 7.6 and 7.4, but at pH 6.8 and 6.5, the peroxidation rates showed a large increase over the rates while the TocH had been present. That is, endogenous TocH behaves as an antioxidant in LDL subjected to attack by the physiologically relevant superoxide radical, whereas TocH behaves as a prooxidant in LDL subjected to attack by the probably far less physiologically important alkylperoxyls. Rates of LDL peroxidation initiated by superoxide increased as the pH was decreased, and the results are consistent with the initiation of peroxidation of fresh LDL occurring via H-atom abstraction from TocH by HOO(*) to form the Toc(*) radical and termination by reaction of O2(*-) with Toc(*), a process that occurs partly by addition leading to TocH consumption and partly by electron plus proton transfer leading to the regeneration of TocH.  相似文献   
5.
Rate constants, k(ArOH/dpph*)(S), for hydrogen atom abstraction from 13 hindered and nonhindered phenols by the diphenylpicrylhydrazyl radical, dpph*, have been determined in n-heptane and a number of alcoholic and nonalcoholic, hydrogen-bond accepting solvents. Abnormally enhanced k(ArOH/dpph*)(S) values of have been observed in alcohols. It is proposed that this is due to partial ionization of the phenols and a very fast electron transfer from phenoxide anion to dpph*. The popular assessment of the antioxidant activities of phenols with dpph* in alcohol solvents will generally lead to an overestimation of their activities.  相似文献   
6.
A synthesis of the alkylidene cyclopentenone prostaglandin TEI 9826 has been realized. The synthesis involved the preparation of the chiral 1,5-diene 8 using a stereoselective Claisen rearrangement from the allylic alcohol 6 giving the ester 7 after vinylation. Then a key RCM reaction allowed the preparation of the cyclopentenol 9 which, after oxidation, gave the cyclopentenone 10, precursor of the prostaglandin.  相似文献   
7.
A lactone ring confers unusual stability to a diphenylmethyl-like radical that is virtually unreactive toward oxygen. Thus, the radical derived from HP-136 is about 10,000 times less reactive than typical carbon-centered radicals. A reversible reaction with oxygen is proposed by analogy with triphenylmethyl; however, the association constant is about 1000 times smaller for HP-136 than for triphenylmethyl. While the lactone ring greatly influences the reactivity, the spectroscopy of the HP-136-derived radical is in line with that expected for a substituted diphenylmethyl radical.  相似文献   
8.
The 2,2'-azobis(isobutyronitrile)(AIBN)-induced autoxidation of gamma-terpinene (TH) at 50 degrees C produces p-cymene and hydrogen peroxide in a radical-chain reaction having HOO* as one of the chain-carrying radicals. The kinetics of this reaction in cyclohexane and tert-butyl alcohol show that chain termination involves the formal HOO. + HOO. self-reaction over a wide range of gamma-terpinene, AIBN, and O2 concentrations. However, in acetonitrile this termination process is accompanied by termination via the cross-reaction of the terpinenyl radical, T., with the HOO. radical under conditions of relatively high [TH] (140-1000 mM) and low [O2] (2.0-5.5 mM). This is because the formal HOO. + HOO. reaction is comparatively slow in acetonitrile (2k approximately 8 x 10(7) M(-1) s(-1)), whereas, this reaction is almost diffusion-controlled in tert-butyl alcohol and cyclohexane, 2k approximately 6.5 x 10(8) and 1.3 x 10(9) M(-1) s(-1), respectively. Three mechanisms for the bimolecular self-reaction of HOO. radicals are considered: 1) a head-to-tail hydrogen-atom transfer from one radical to the other, 2) a head-to-head reaction to form an intermediate tetroxide, and 3) an electron-transfer between HOO. and its conjugate base, the superoxide radical anion, O2-.. The rate constant for reaction by mechanism (1) is shown to be dependent on the hydrogen bond (HB) accepting ability of the solvent; that by mechanism (2) is shown to be too slow for this process to be of any importance; and that by mechanism (3) is dependent on the pH of the solvent and its ability to support ionization. Mechanism (3) was found to be the main termination process in tert-butyl alcohol and acetonitrile. In the gas phase, the rate constant for the HOO. + HOO. reaction (mechanism (1)) is about 1.8 x 10(9) M(-1) s(-1) but in water at pH< or =2 where the ionization of HOO. is completely suppressed, this rate constant is only 8.6 x 10(5) M(-1) s(-1). The very large retarding effect of water on this reaction has not previously been explained. We find that it can be quantitatively accounted for by using Abraham's HB acceptor parameter, beta(2)(H), for water of 0.38 and an estimated HB donor parameter, alpha(2)(H), for HOO. of about 0.87. These Abraham parameters allow us to predict a rate constant for the HOO. + HOO. reaction in water at 25 degrees C of 1.2 x 10(6) M(-1) s(-1) in excellent agreement with experiment.  相似文献   
9.
The Monte Carlo (MC) and molecular dynamics (MD) methodologies are now well established for computing equilibrium properties in homogeneous fluids. This is not yet the case for the direct simulation of two-phase systems, which exhibit nonuniformity of the density distribution across the interface. We have performed direct MC and MD simulations of the liquid-gas interface of n-pentane using a standard force-field model. We obtained density and pressure components profiles along the direction normal to the interface that can be very different, depending on the truncation and long range correction strategies. We discuss the influence on predicted properties of different potential truncation schemes implemented in both MC and MD simulations. We show that the MD and MC profiles can be made in agreement by using a Lennard-Jones potential truncated via a polynomial function that makes the first and second derivatives of the potential continuous at the cutoff distance. In this case however, the predicted thermodynamic properties (phase envelope, surface tension) deviate from experiments, because of the changes made in the potential. A further readjustment of the potential parameters is needed if one wants to use this method. We conclude that a straightforward use of bulk phase force fields in MD simulations may lead to some physical inconsistencies when computing interfacial properties.  相似文献   
10.
A combination of laser flash photolysis and competitive kinetic methods have been used to measure the absolute bimolecular rate constants for hydrogen atom abstraction in water from a variety of organic substrates including alcohols, ethers, and carboxylic acids by the perfluoroalkyl radical, *CF(2)CF(2)OCF(2)CF(2)SO(3)(-) Na(+). Comparison, where possible, of these rate constants with those previously measured for analogous reactions in the non-polar organic solvent, 1,3-bis(trifluoromethyl)benzene (J. Am. Chem. Soc, 1999, 121, 7335) show that the alcohols react 2-5 times more rapidly in the water solvent and that the ethers react at the same rate in both solvents. A transition state for hydrogen abstraction that is more reminiscent of an "intimate ion pair" than a "solvent separated ion pair" is invoked to explain these modest solvent effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号