首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学   2篇
数学   1篇
物理学   6篇
  2017年   1篇
  2013年   3篇
  2011年   2篇
  1999年   1篇
  1998年   1篇
  1987年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
2.
3.
Magnetic tunnel junctions are currently being used in magnetoresistive reading heads, magnetic field sensors and MRAMs, due to its giant magnetoresistance effect whose roots are linked to strong spin-dependent scattering mechanisms. The existence of spin-polarized currents in such devices posed us the question over the possibility to generate coherent microwave radiation in a spin inverted population medium, maintained through a spin-polarized current. In this paper we investigate the possibility of obtaining a maser effect considering a magnetic tunnel junction placed inside a resonant cavity. We put forward a simple model based on phenomenological rate equations, being the spin-polarized currents determined by the physics of the magnetic tunnel junction.  相似文献   
4.
5.
The Mellin transform and Poisson summation formula are used to derive an expression for the Coulomb interaction energy of a three-dimensional system with periodicity in one direction. Initially, calculations are performed for interactions characterized by any inverse power and, using the analytical continuation of the energy function, one obtains the final expression for the interaction energy of charges. We consider also a special case when two different charges are located on a line parallel to the periodicity direction. The energy and force expressions are identical to those obtained from the Lekner summation which is simply a sum over reciprocal lattice terms. The convergence behaviour of the Lekner summation is compared with that based on the Ewald type approach.  相似文献   
6.
A. BRÓDKA 《Molecular physics》2013,111(21):3177-3180
The Ewald-type method, its modified version and the Lekner-type method for summing Coulomb interactions in a system periodic along one direction are presented and compared. Advantages and disadvantages of these methods are discussed, and the methods are tested in molecular dynamics simulations of acetone molecules confined to cylindrical silica pores.  相似文献   
7.
Micellar-enhanced ultrafiltration is a separation technique which can be used to remove metal ions or dissolved organics from water. Metal ions bind to the surface of negatively charged micelles of an anionic surfactant while organic solutes tend to dissolve or solubilized within the micelles. The mixture is then forced through an ultrafiltration membrane with pore sizes small enough to block passage of the micelles and associated metal ions and/or dissolved organics. Monomeric or unassociated surfactant passes through the membrane and does not contribute to the separation. This paper considers advantages of addition of small concentrations of nonionic surfactant to an anionic surfactant; the resulting anionic-nonionic mixed micelles exhibit negative deviation from ideality of mixing which leads to a smaller fraction of the surfactant being present as monomer and a subsequently larger fraction present in the micellar form. The addition of nonionic surfactant improved the separation of divalent zinc substantially at total concentrations above the critical micelle concentration (cmc) of the anionic surfactant. Both zinc and tert-butylphenol (a nonionic organic solute) show unexpected rejection at surfactant concentrations moderately below the cmc, where micelles are absent. This is considered as due to a higher surfactant concentration in the gel layer adjacent to the membrane where micelles are present. Reduction of this rejection at lower transmembrane pressure drops supports this mechanism. Some rejection of zinc was observed in the absence of surfactant but not of tert-butylphenol, indicating an additional effect of membrane charge for ionic solutes. Copyright 1999 Academic Press.  相似文献   
8.
It is demonstrated that the coexistence of superconductivity and magnetic ordering, occurring, for instance, in iron-based pnictides and uranium compounds, is not forbidden by classical Maxwell’s equations and London-type equations. It predicts simply that internal magnetization is allowed but localized magnetic moments are screened at distances of the order of the London penetration depth. A microscopic theory is considered for the case of ferromagnetic ordering, described in simple terms by electron-magnon coupling. For the sake of simplicity, we assume that itinerant electrons are not responsible for the magnetic ordering, but interact with phonon and magnon excitations, leading to an alternative Cooper pair channel. The temperature dependence and the isotope effect of the superconducting gap is also analysed.  相似文献   
9.
The integral representation of the gamma function and the Poisson summation formula are used to calculate the interaction energy of charged particles in a 3-dimensional system periodic in two directions. A parallelogram shape simulation box is considered. Calculations are carried out for interactions described by any inverse power, and analytical continuation of the energy function leads to the final expression for the Coulomb interaction energy. Summation over the simulation box replica along one or the other side of the box base is replaced by summation in reciprocal space. Therefore there are two equivalent formulas for the potential energy that offer the possibility of avoiding slowly convergent series. The energy expressions are identical to those obtained from the Lekner method. The special case is considered where the functions defining the energy are infinite, i.e. when two charges lie on a line parallel to the simulation box side that was chosen to convert real space summation into reciprocal space.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号