首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
化学   24篇
物理学   9篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2007年   3篇
  2006年   5篇
  2005年   1篇
  2003年   3篇
  2002年   3篇
  2000年   1篇
  1995年   1篇
  1993年   1篇
  1988年   1篇
  1986年   2篇
  1981年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
1.
A silica-based solid-phase extraction system suitable for incorporation into a microchip platform (nu-total analytical system; nu-TAS) would find utility in a variety of genetic analysis protocols, including DNA sequencing. The extraction procedure utilized is based on adsorption of the DNA onto bare silica. The procedure involves three steps: (i) DNA adsorption in the presence of a chaotropic salt, (ii) removal of contaminants with an alcohol/water solution, and (iii) elution of the adsorbed DNA in a small volume of buffer suitable for polymerase chain reaction (PCR) amplification. Multiple approaches for incorporation of this protocol into a microchip were examined with regard to extraction efficiency, reproducibility, stability, and the potential to provide PCR-amplifiable DNA. These included packing microchannels with silica beads only, generating a continuous silica network via sol-gel chemistry, and combinations of these. The optimal approach was found to involve immobilizing silica beads packed into the channel using a sol-gel network. This method allowed for successful extraction and elution of nanogram quantities of DNA in less than 25 min, with the DNA obtained in the elution buffer fraction. Evaluation of the eluted DNA indicated that it was of suitable quality for subsequent amplification by PCR.  相似文献   
2.
Microchip-based proteomic analysis requires proteolytic digestion of proteins in microdevices. Enzyme reactors in microdevices, fabricated in glass, silicon, and PDMS substrates, have recently been demonstrated for model protein digestions. The common approach used for these enzyme reactors is employment of a syringe pump(s) to generate hydrodynamic flow, driving the proteins through the reactors. Here we present a novel approach, using electroosmotic flow (EOF) to electrokinetically pump proteins through a proteolytic system. The existence of EOF in the proteolytic system packed with immobilized trypsin gel beads was proven by imaging the movement of a neutral fluorescent marker. Digestions of proteins were subsequently carried out for 12 min, and the tryptic peptides were analyzed independently using capillary electrophoresis (CE) and MALDI-TOF mass spectrometry (MS). The results from CE analysis of the tryptic peptides from the EOF-driven proteolytic system and a conventional water bath digestion were comparable. MALDI-TOF MS was used to identify the parent protein and the tryptic peptides using MS-Fit database searching. The potential utility of the EOF-driven proteolytic system was demonstrated by direct electro-elution of proteins from an acrylamide gel into the proteolytic system, with elution and tryptic digestion achieved in a single step. The EOF-driven proteolytic system, thus, provides a simple way to integrate protein digestion into an electrophoretic micro total analysis system for protein analysis and characterization.  相似文献   
3.
Strings of single‐walled carbon nanotubes (SWCNT) were prepared using an aqueous dispersion of gellan gum wrapped nanotubes and crosslinked using Ca2+ ions. Various formulations were evaluated to determine the parameters for successful string formation; these included 8–12 % nanotube by weight, 60–70 % gellan gum, and 20–30 % KCl. Strings showed electrical conductivity when dried between ITO electrodes. Conductivity variations were observed and potential sources of the variation identified. Proteins were attached to the carbon nanotube strings with peroxidase enzymatic activity detected following horseradish peroxidase attachment. This work provides a basis for development of electronic biosensors based on these carbon nanotube strings.  相似文献   
4.
This work describes the performance of poly(methyl methacrylate) (PMMA) microfluidic DNA purification devices with embedded microfabricated posts, functionalized with chitosan. PMMA is attractive as a substrate for creating high surface area (SA) posts for DNA capture because X-ray lithography can be exploited for extremely reproducible fabrication of high SA structures. However, this advantage is offset by the delicate nature of the posts when attempting bonding to create a closed system, and by the challenge of functionalizing the PMMA surface with a group that invokes DNA binding. Methods are described for covalent functionalization of the post surfaces with chitosan that binds DNA in a pH-dependent manner, as well as for bonding methods that avoid damaging the underlying post structure. A number of geometric posts designs are explored, with the goal of identifying post structures that provide the requisite surface area without a concurrent rise in fluidic resistance that promotes device failure. Initial proof-of-principle is shown by recovery of prepurified human genomic DNA (hgDNA), with real-world utility illustrated by purifying hgDNA from whole blood and demonstrating it to be PCR-amplifiable.  相似文献   
5.
CE allows for highly reproducible analysis of DNA fragments which can be used to detect DNA mutations including SNPs. We have utilized a simple and direct CE analysis method for SNP analysis called conformation-sensitive CE (CSCE), based on the principle of single nucleotide different to produce conformational changes in the mildly denaturing solvent system. This method was applied to analysis of a mutation in the promoter region of the hMSH2 gene. This gene belongs to the human DNA mismatch repair system, which is responsible for recognizing and repairing mispaired nucleotides, and mutations in the hMSH2 gene are known to cause hereditary nonpolyposis colorectal cancer (HNPCC). PCR fragments generated from the promoter region of the hMSH2 gene, displaying either a C/C homozygote, C/T heterozygote, or T/T homozygote genotype, did not require further pretreatment before electrokinetic injection. The CE separation, using a 1xTris-borate-EDTA (TBE) buffer containing 3% w/v hydroxylethyl cellulose (HEC) and 6 M urea, was performed under reverse polarity with a separation temperature of 15 degrees C. The genotypes of 204 healthy volunteers and 13 colorectal cancer patients were determined using CSCE, and the results confirmed by DNA sequencing. While the CSCE separations were shown to be highly reproducible and sensitive for screening large populations, no correlation was observed between cancer patients and this hMSH2 gene polymorphism.  相似文献   
6.
This work describes an integrated glass microdevice for proteomics, which directly couples proteolysis with affinity selection. Initial results with standard phosphopeptide fragments from β-casein in peptide mixtures showed selective capture of the phosphorylated fragments using immobilized metal affinity chromatography (IMAC) beads packed into a microchannel. Complete selectivity was seen with angiotensin, with capture of only the phosphorylated form. On-chip proteolysis, using immobilized trypsin beads packed into a separate channel, was directly coupled to the phosphopeptide capture and the integrated devices evaluated using β-casein. Captured and eluted fragments were analyzed using both capillary electrophoresis (CE) and capillary liquid chromatography/mass spectrometry (cLC/MS). The results show selective capture of only phosphopeptide fragments, but incomplete digestion of the protein was apparent from multiple peaks in the CE separations. The MS analysis indicated a capture bias on the IMAC column for the tetraphosphorylated peptide fragment over the monophosphorylated fragment. Application to digestion and capture of a serum fraction showed capture of material; however, non-specific binding was evident. Additional work will be required to fully optimize this system, but this work represents a novel sample preparation method, incorporating protein digestion on-line with affinity capture for proteomic applications.  相似文献   
7.
In this study a novel glass membrane was prepared for conducting high voltage (HV) to solution in the channel of a microfabricated device for generation of liquid electrospray. Taylor cone formation and mass spectra obtained from this microdevice confirmed the utility of the glass membrane, but voltage conduction through the membrane could not be successfully explained based solely on the conductivity of the glass itself. This novel method for developing a high-voltage interface for microdevices avoids direct metal/liquid contact eliminating bubble formation in the channel due to water hydrolysis on the surface of the metal. Further, this arrangement produces no dead volume as is often found with traditional liquid junctions. At the same time, preliminary investigations into the outlet design of glass microdevices for interfacing with electrospray mass spectrometry, was explored. Both the exit shape and the use of hydrophobic coatings at the channel exit of the microdevice electrospray interface were evaluated using standard proteins with results indicating the utility of this type of design after further optimization.  相似文献   
8.
9.
The potential for using polyelectrolyte multilayers (PEMs) to provide chromatographic functionality on continuous silica networks created from sol-gel chemistry has been evaluated by capillary electrochromatography (CEC). Construction of the PEM was achieved by flushing the column with polyelectrolytes of alternative charge, with variation of the properties of the exposed polyelectrolyte providing a unique means to vary the chromatographic surface. Variation of the exposed polyelectrolyte from poly(diallyldimethylammonium chloride) (PDDAC) to dextran sulfate (DS) allowed the direction of the electroosmotic flow (EOF) to be changed and also provided a means to vary the chromatographic capacity. Variation of negative polymer from DS to poly(styrene sulfonate) (PSS) significantly altered the EOF and the migration of peptides, with both the reversed-phase and ion-exchange capacities increasing. An alternative method for changing the column capacity was to change the thickness of the PEM, which was evaluated by anion-exchange CEC. A 70-80% increase in retention was observed for all anions without any increase in EOF suggesting significant penetration of the analytes through the PEM and interaction with buried charges within the PEM.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号