首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   464篇
  免费   20篇
  国内免费   4篇
化学   385篇
晶体学   1篇
数学   51篇
物理学   51篇
  2023年   3篇
  2022年   10篇
  2021年   15篇
  2020年   9篇
  2019年   9篇
  2018年   7篇
  2017年   8篇
  2016年   16篇
  2015年   10篇
  2014年   13篇
  2013年   34篇
  2012年   35篇
  2011年   25篇
  2010年   23篇
  2009年   15篇
  2008年   38篇
  2007年   41篇
  2006年   33篇
  2005年   32篇
  2004年   20篇
  2003年   18篇
  2002年   17篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1998年   4篇
  1997年   6篇
  1994年   4篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1981年   3篇
  1980年   1篇
  1978年   1篇
  1977年   2篇
  1974年   4篇
  1973年   2篇
排序方式: 共有488条查询结果,搜索用时 343 毫秒
1.
The substitution behaviour of [Pt(terpy)H2O]2+ and [Pt(bpma)H2O]2+, where terpy is 2,2:62-terpyridine and bpma is bis(2-pyridylmethyl)amine, was studied as a function of entering thiol concentration and temperature. The reactions between the Pt-complexes and DL-penicillamine, L-cysteine and glutathione were carried out in a 0.10 mol dm–3 aqueous HClO4 medium using stopped-flow and conventional u.v.–vis spectrophotometry. The observed pseudo-first-order rate constants for the substitutions are given by k obs = k 2[thiol] + k –2. The k –2 term represents the reverse solvolysis. This was found to be zero for PtII(terpy) which was the most reactive complex. The second-order rate constants, k 2, for the three thiols varied between 0.107 ± 0.001 and 0.517 ± 0.025 M–1 s–1 for PtII(bpma) and 10.7 ± 0.7–711.9 ± 18.3 M–1 S–1 for PtII(terpy), whereas glutathione was found to be the strongest nucleophile. An analysis of the activation parameters, H and S , clearly shows that the substitution process is associative in nature.  相似文献   
2.
Cationic Rh(III) complex [Cp(PMe(3))Rh(SiPh(3))(CH(2)Cl(2))]BAr(4)' (1) activates the carbon-carbon bond of aryl and alkyl cyanides (R-CN, where R = Ph, (4-(CF(3))C(6)H(4)), (4-(OMe)C(6)H(4)), Me, (i)Pr, (t)Bu) to produce complexes of the general formula [Cp*(PMe(3))Rh(R)(CNSiPh(3))]BAr(4)'. With the exception of the (t)BuCN case, every reaction proceeds at room temperature (t(1/2) < 1 h for aryl cyanides, t(1/2) < 14 h for alkyl cyanides). A general mechanism is presented on the basis of (1) an X-ray crystal structure determination of an intermediate isolated from the reaction involving 4-methoxybenzonitrile and (2) kinetic studies performed on the C-C bond cleavage of para-substituted aryl cyanides. Initial formation of an eta(1)-nitrile species is observed, followed by conversion to an eta(2)-iminoacyl intermediate, which was observed to undergo migration of R (aryl or alkyl) to rhodium to form the product [Cp*(PMe(3))Rh(R)(CNSiPh(3))]BAr(4)'.  相似文献   
3.
[reaction: see text] A new mild method for protecting alcohols as t-butyl ethers is reported. The reaction proceeds with Mg(ClO4)2 and Boc2O and shows general applicability. The deprotection of t-butyl ethers has also been revisited. Preliminary results indicate the CeCl3 x 7H2O/NaI system is a very suitable catalyst for their removal.  相似文献   
4.
Cretich M  Chiari M  Rech I  Cova S 《Electrophoresis》2003,24(21):3793-3799
DNA fragment analysis requires the use of polymer solutions as sieving matrices. Generally, such matrices are constituted of high-molar-weight polymers employed at a concentration higher than their entanglement threshold concentration. These polymer solutions are highly viscous and difficult to use in the narrow channels of a microchip. Ultralarge polyacrylamides synthesized via a nonconventional method, being the low-temperature plasma-induced polymerization (PIP), were used as DNA sieving matrices for microchip electrophoresis. The distinctive features of these polymers (ultralarge molecular mass and linearity) allow their use at a dilute concentration. Dilute PIP polyacrylamides revealed a constant value of resolution in a broad range of DNA fragment sizes (123 bp-1353 bp), thus proving to be effective in common genotyping applications. Moreover, the low viscosity of the dilute solutions enable it to be easier and faster in filling the channel between runs, thus enhancing the throughput of the microchip devices.  相似文献   
5.
The impedance of the cell Au/HClO4-5.5 H2O/Au was investigated in the frequency range 1 to 105 Hz between 4.2 and 300 K. The analysis of the data enables an evaluation of important electrolyte properties such as conductivity and dielectric constant in a wide range of temperatures, predominantly in the solid state of the electrolyte HClO4-5.5 H2O (Tf = 228 K). The double layer capacity of the gold electrodes was also determined; it shows a qualitatively similar result compared with previous measurements. In the solid state, the ionic conductivity exhibits two distinct activation energies of 0.37 and 0.54 eV corresponding to the two phases present in HClO4-5.5 H2O above and below 170 K. Below 120 K the activation energy becomes very small and tends to zero around 80 K indicating possible tunneling processes in the rigid H2O structure. At about the same temperature the dielectric constant reaches its low temperature limit with a value ≈ 11 which is considerably higher than the value of pure ice of ≈ 3.  相似文献   
6.
Alkylation of indoles by means of the Michael addition has been the subject of a number of investigation. It is well established that regioselectivity in the additions of indoles to electron-deficient alkenes is strongly controlled by the reaction medium. In a continuation of the work on developing greener and cleaner technologies, the cerium(III) chloride heptahydrate and sodium iodide combination supported on silica gel catalyzes the alkylation of various indoles with alpha,beta-unsaturated ketones giving 3-(3-oxoalkyl)indole derivatives in good yields. The substitution on the indole nucleus occurred exclusively at the 3-position, and N-alkylation products have not been observed.  相似文献   
7.
Derivatives of two new molecular structures, namely, [1,3]thiazino[3,2-a]purine and [1,2,3]triazolo[4,5-d]-[1,3]thiazino[3,2-a]pyrimidine, were synthesized together with other heterocyclic compounds. Retrosynthetic analysis of their molecular skeletons suggested a simple way of obtaining 3,4-dihydro-7,8-diamino-2H,6H-pyrimido[2,1-b][1,3]thiazin-6-one, which is a useful intermediate for their synthesis. This intermediate and the thiazole homologue were obtained directly by reaction of 5,6-diamino-2,3-dihydro-2-thioxo-4(lH)-pyrimidi-none with 1,3- or 1,2-dibromoalkane, respectively.  相似文献   
8.
The ligand 1,4-bis[4-(diphenylphosphino)butyl]-2,3,5,6-tetramethylbenzene, 3, was used to synthesize a mononuclear Rh(II) complex [(eta(1):eta(6):eta(1)-1,4-bis[4-(diphenylphosphino)butyl]-2,3,5,6-tetramethylbenzene)Rh][PF(6)](2), 6+, in a two-legged piano-stool geometry. The structural and electronic properties of this novel complex including a single-crystal EPR analysis are reported. The complex can be cleanly interconverted with its Rh(I) form, allowing for a comparison of the structural properties and reactivity of both oxidation states. The Rh(I) form 6 reacts with CO, tert-butyl isocyanide, and acetonitrile to form a series of 15-membered mononuclear cyclophanes [(eta(1):eta(1)-1,4-bis[4-(diphenylphosphino)butyl]-2,3,5,6-tetramethylbenzene)Rh(CO)(3)][PF(6)] (8), [(eta(1):eta(1)-1,4-bis[4-(diphenylphosphino)butyl]-2,3,5,6-tetramethylbenzene)Rh(CNC(CH(3))(3))(2)][PF(6)] (10), and [(eta(1):eta(1)-1,4-bis[4-(diphenylphosphino)butyl]-2,3,5,6-tetramethylbenzene)Rh(CO)(CH(3)CN)][PF(6)] (11). The Rh(II) complex 6+ reacts with the same small molecules, but over shorter periods of time, to form the same Rh(I) products. In addition, a model two-legged piano-stool complex [(eta(1):eta(6):eta(1)-1,4-bis[3-(diphenylphosphino)propoxy]-2,3,5,6-tetramethylbenzene)Rh][B(C(6)F(5))(4)], 5, has been synthesized and characterized for comparison purposes. The solid-state structures of complexes 5, 6, 6+, and 11 are reported. Structure data for 5: triclinic; P(-)1; a = 10.1587(7) A; b = 11.5228(8) A; c = 17.2381(12) A; alpha = 96.4379(13) degrees; beta = 91.1870(12) degrees; gamma = 106.1470(13) degrees; Z = 2. 6: triclinic; P(-)1; a = 11.1934(5) A; b = 12.4807(6) A; c = 16.1771(7) A; alpha = 81.935(7) degrees; beta = 89.943(1) degrees; gamma = 78.292(1) degrees; Z = 2. 6+: monoclinic; P2(1)/n; a = 11.9371(18) A; b = 32.401(5) A; c = 12.782(2) A; beta = 102.890(3) degrees; Z = 4. 11: triclinic; P(-)1; a = 13.5476(7) A; b = 13.8306(7) A; c = 14.9948(8) A; alpha = 74.551(1) degrees; beta = 73.895(1) degrees; gamma = 66.046(1) degrees; Z = 2.  相似文献   
9.
[structure: see text] Three analogues of suberoyl anilide hydroxamic acid (SAHA) with phosphorus metal-chelating functionalities were synthesized as inhibitors of histone deacetylases (HDACs). The compounds showed weak activity for HeLa nuclear extracts (IC(50) = 0.57-6.1 mM), HDAC8 (IC(50) = 0.28-0.41 mM), and histone-deacetylase-like protein (HDLP, IC(50) = 0.33-1.9 mM), suggesting that the transition state of HDAC is not analogous to zinc proteases. Antiproliferative activity against A2780 cancer cells (IC(50) = 0.11-0.12 mM), comparable to SAHA (0.15 mM), was observed.  相似文献   
10.
A peptidomimetic of the turn in the helix-turn-helix (HTH) motif of DNA-binding proteins was designed and synthesized. Conformational constraint was achieved by an unusual linking of two amino acids with a side chain carbon-carbon bond. A phenyl ring provides the potential for new hydrophobic contacts with the hydrophobic core of the HTH motif. In the mimic, the peptide backbone and the central residue were retained in native form within a 12-membered cyclic tripeptide. The target compound 1b was synthesized by two sequential Horner-Wittig couplings followed by enantioselective hydrogenation with Rh(MeDuPHOS) in eight steps and 35% overall yield. The stereochemical outcome of the key hydrogenation was determined by aromatic ring oxidation with RuO(2)/NaIO(4) to give 2 equiv of Boc-Asp-OMe.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号