首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   1篇
化学   21篇
数学   5篇
物理学   1篇
  2022年   1篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2014年   2篇
  2013年   9篇
  2012年   1篇
  2011年   4篇
  2007年   1篇
排序方式: 共有27条查询结果,搜索用时 31 毫秒
1.
Two new symmetrical diamines were designed and synthesized having different functional groups such as a pair of phenyl ether linkages, 2,3-diaryl substituted imidazole rings and CF3 groups as pendant, and characterized by FT-IR, 1H and 13C-NMR spectroscopy and elemental analysis. A series of new fluorescent poly(imide-ether)s (PIEs) was prepared by polymerization of the diamines with commercial tetracarboxylic dianhydrides such as pyromellitic dianhydride and 3,3′,4,4′-benzophenone tetracarboxylic dianhydride. The resulting PIEs were amorphous and had intrinsic viscosity [η] in the range of 0.42–0.51 dL/g. The weight average molecular weights (Mw) of these polymers were measured by GPC and were in the range of 28658–35595 g/mol with molecular weight distribution (MWD) of 2.12–2.27. These polymers were readily soluble in a variety of organic solvents and formed low-colored and flexible thin films with cut-off wavelength (λ0) in the range of 385–420 nm, and all PIEs films exhibited high optical transparency. They also possessed good thermal stability with 10% weight loss temperatures (T10%) in the range 486–537°C in N2. The glass transition temperatures (Tg) of PIEs are in the range 251–324°C. These polymers showed fluorescence emission in film and in solution at 459–476 nm with the quantum yields in the range 4–12%.  相似文献   
2.
A versatile, alternative and environmentally benign strategy for the synthesis of a series of pyrazoles has been successfully performed in water using PEG–SO3H as an acidic catalyst. The products are obtained in high yield from the one-pot reaction procedure involving dicarbonyl compounds and hydrazines/hydrazides. This new method totally avoids the use of organic acids and toxic or expensive solvents in this reaction. The catalyst is waste-free, easily prepared, and efficiently re-used.  相似文献   
3.
Three diamine monomers with different derivatives of imidazole heterocyclic ring and meta-linked aryl ethers were synthesized and used in polycodensation reaction with various commercial dianhydrides for preparation of a series of novel poly(ether-imide) (PEI)s. The polycodensation reactions were carried out by using conventional method and in a green medium of ionic liquid (IL) without using NMP-pyridine-acetic anhydride. The PEIs were obtained in good yields (80% 96%) with moderate viscosity (0.48 0.66 dL/g) in a shorter reaction time (10 h) in IL as compared with the conventional method (36 h). All of the polymers were amorphous in nature, showed excellent solubility in amide-type polar aprotic solvents with ability to form tough and flexible films, and excellent thermal stability with Tgs in the range of 212 340 ℃ and 10% weight loss temperature (T10) up to 570℃ in N 2 and 528 ℃ in air.  相似文献   
4.
Three new dispersive liquid–liquid microextraction (DLLME) methods, air-assisted (AA-DLLME), vortex-assisted (VA-DLLME) and ultrasound-assisted (UA-DLLME), were compared from the point of view of their analytical application for preconcentration of trace amounts of benzene, toluene, ethylbenzene and xylene isomers (BTEX) in water samples. In all of these methods, no dispersive solvent is required and dispersion of extractant is carried out by air bubbles, vortex and ultrasound for AA-DLLEM, VA-DLLME, and UA-DLLME, respectively. Advantages and disadvantages of these three liquid phase microextraction methods and their capability in dispersion of a similar extractant phase in sample solutions were comprehensively compared. All other extraction parameters, which have an influence on the microextraction, were also investigated and optimized. Under optimized conditions, analytical figures of merit for the three techniques were determined and compared. It was found that the limit of detection of the three methods is almost the same, while AA-DLLME has a wider linear dynamic range and the shortest analysis time. Enrichment factors of 182, 45 and 245 were achieved for AA-DLLEM, VA-DLLME, and UA-DLLME, respectively.  相似文献   
5.
This article has investigated a new multiobjective allocation of optimal sizing and sitting of distributed generation (DG) units and capacitor banks in simultaneous mode to improve reliability and reduce energy losses. The proposed method consists of four objectives, that is, cost of energy not supplied, system average interruption duration index, costs of energy loss and investment. A novel structure differential evolution has been suggested to solve this nonlinear complex problem and its results are compared with related values of genetic algorithm and simple differential evolutionary algorithm. In addition to the novel objective function, the other contribution of this article is proposing a new model for load and energy cost. Three types of DGs, that is, wind turbine, solar cell, and diesel generator have been used in placement process. To verify the comprehensiveness of the proposed function, three scenarios have been introduced: scenario i: first, placement of DGs, then capacitor banks, scenario ii: first, placement of capacitor banks, and then DGs, and scenario iii: simultaneous placement of DGs and capacitor banks. Simulations have been carried out on one part of practical distribution network in Metropolitan Tabriz in North West of Iran. The results of simulations have been discussed and analyzed using the five novel indices. The obtained simulation results using proposed function shows that the simultaneous placement of DGs and capacitor banks results in more reduction of the energy losses and increase improvements of reliability indices as well as voltage profile. © 2013 Wiley Periodicals, Inc. Complexity 19: 40–54, 2014  相似文献   
6.
7.
In this paper, a robust and accurate algorithm for solving both linear and nonlinear singular boundary value problems is proposed. We introduce the Chebyshev wavelets operational matrix of derivative and product operation matrix. Chebyshev wavelets expansions together with operational matrix of derivative are employed to solve ordinary differential equations in which, at least, one of the coefficient functions or solution function is not analytic. Several examples are included to illustrate the efficiency and accuracy of the proposed method.  相似文献   
8.
In this paper, dynamic dairy facility location and supply chain planning are studied through minimizing the costs of facility location, traffic congestion and transportation of raw/processed milk and dairy products under demand uncertainty. The proposed model dynamically incorporates possible changes in transportation network, facility investment costs, monetary value of time and changes in production process. In addition, the time variation and the demand uncertainty for dairy products in each period of the planning horizon is taken into account to determine the optimal facility location and the optimal production volumes. Computational results are presented for the model on a number of test problems. Also, an empirical case study is conducted in order to investigate the dynamic effects of traffic congestion and demand uncertainty on facility location design and total system costs.  相似文献   
9.
More than 70% of the world's nickel reserves are found in laterite ores. In this research, a laterite ore sample, containing Ni, Co, and Fe, was employed to study the recovery of nickel and cobalt. Thus, the effect of calcination, acid concentration, percent solids, and stirring rate on nickel and cobalt recoveries from an iron-rich laterite sample was investigated. Optimization with response surface methodology and kinetic studies were performed. The calcination of the sample prior to leaching at 500°C for 2 h provided condition for better nickel and cobalt dissolutions. At optimal conditions, the concentration of sulfuric acid, solid-to-liquid ratio, stirring speed, temperature, and time test were equal to 5 M, 0.1, 370 rpm, 90°C, and 2 h, respectively. The highest recoveries of nickel and cobalt were 65.9% and 63.1%, respectively. Solids content had a negative effect on Ni and Co recovery, whereas acid concentration was positively affected. Addition of 10% (w/v) NaCl in the presence of 5 M acid concentration, 60°C, 370 rpm, and leaching time of 2 h increased the nickel and cobalt recoveries, 15.3% and 21.4%, respectively. The high dependence of process on temperature indicates chemical control; the activation energies E= 59.54 and E= 45.74 kJ/mol, respectively, for nickel and cobalt, were also consistent with this conclusion.  相似文献   
10.
The intercalation of indomethacin into the interlayer gallery of layered zinc hydroxide (LZH) has been successfully executed using the simple ion exchange approaches. The synthesized intercalation compound, indomethacin-LZH nanohybrid, was characterized using PXRD, FTIR, SEM, BET, and STA. From the PXRD results, the intercalation of indomethacin anions into the interlayer gallery of LZH was successful; showing the formation of a new peak at lower 2θ with a basal spacing of 21.96?Å. FTIR analysis of the nanohybrid further supported the presence of indomethacin in the interlayer of the indomethacin-LZH nanohybrid. STA analysis confirms that the nanohybrid has higher thermal stability than pure indomethacin. The in vitro release mechanism of the indomethacin anions from the indomethacin-LZH nanohybrid showed slow release, with 95% and 78% release in phosphate buffer saline (PBS) solution at pH 4.8 and 7.4, respectively. The release behavior of indomethacin from its intercalation compounds in PBS solution at pH 4.8 and 7.4 follows the Higuchi model. In addition, the nanohybrid treated with normal fibroblast cell line shows that it reduces cell viability in a dose and time-dependent manner. This study shows that the high potential of the nanohybrid as an encapsulated material for the controlled release formulation of nonsteroidal anti-inflammatory (NASID) anions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号