首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   4篇
数学   1篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  1966年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Arsenic‐binding proteins are of toxicological importance since enzymatic activities can be blocked by arsenic interactions. In the present work, a novel methodology based on size exclusion chromatography coupled to electrospray ionization mass spectrometry (SEC‐ESI‐MS) was developed with special emphasis to preserve the intact proteins and their arsenic bindings. The eluent composition of 25 mM Tris/HCl, pH 7.5, with the addition of 100‐mM NaCl optimized for SEC with UV detection provided the highest SEC separation efficiency, but was not compatible with the ESI‐MS because of the non‐volatility of the buffer substance and of the salt additive. In order to find the best compromise between chromatographic separation and ionization of the arsenic‐binding proteins, buffer type and concentration, pH value, portion of organic solvent in the SEC eluent as well as the flow rate were varied. In the optimized procedure five different arsenic‐binding peptides and proteins (glutathione, oxytocin, aprotinin, α‐lactalbumin, thioredoxin) covering a molar mass range of 0.3–14 kDa could be analyzed using 75% 10‐mM ammonium formate, pH 5.0/25% acetonitrile (v : v) as eluent and a turbo ion spray source operated at 300 °C and 5.5 kV. A complete differentiation of all peptides and proteins involved in the arsenic‐binding studies as well as of their arsenic‐bound forms has become feasible by means of the extracted ion chromatograms (XIC) of the mass spectrometric detection. The new method offered the possibility to estimate equilibrium constants for the reaction of phenylarsine oxide with different thiol‐containing biomolecules by means of the XIC peak areas of reactants and products. Limits of detection in the range of 2–10 µM were obtained by SEC‐ESI‐MS for the individual proteins. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
2.
The focus of this work is the identification of a unit cell that is able to represent the microstructure of a closed-cell solid foam to predict the effective behaviour of the foam numerically. For the investigation, a finite element model consisting of a repeating unit cell with periodical boundary conditions is implemented. A tetrakaidecahedral foam microstructure is considered as simplified cell geometry, and a strain-energy based homogenisation concept is utilized. On the basis of image analysis imperfections are applied to the cell. The obtained model is used as a representative volume element (RVE) for further investigations of the postbuckling behaviour of the foams. Different analyses are performed and the results are compared to literature and experimental data. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
3.
4.
The betain‐like SOC2(PPh3)2 ( 1a ) reacts with [Mn2(CO)10] in THF to produce the salt‐like complex [(CO)4Mn(SOC2{PPh3}2)2][Mn(CO)5] ( 2 ). 1a is bonded via the sulfur atoms which are arranged in trans position in the octahedral environment of the manganese atom. With InCl3 from CH2Cl2 solution the addition product [Cl3In(SOC2{PPh3}2)] ( 3 ) is obtained along with the salt (H2C{PPh3}2)[InCl4]2 ( 4 ), which is the result of proton abstraction from the solvent. The crystal structures of 2· 0.5THF and 4· CH2Cl2 are reported. The compounds are further characterized by IR and 31P NMR spectroscopy.  相似文献   
5.
The deprotonation of imidazolium salts to N-heterocyclic carbenes is often a decisive step in modern catalytic reactions. Therefore, we studied the H/D exchange of the C2 H of 15 imidazolium-substituted calix[4]arenes and 11 nonmacrocyclic model compounds in methanol/water (97:3). The influence of the counterion, substitution directly on the imidazolium unit or on the preorientating calixarene backbone could be studied. The observed exchange rates might give a rational for the suitability of the imidazolium salts as precursors in the Suzuki coupling.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号