首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   3篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
A controlled composition‐based method—that is, the microwave‐assisted ethylene glycol (MEG) method—was successfully developed to prepare bimetallic PtxRu100?x/C nanoparticles (NPs) with different alloy compositions. This study highlights the impact of the variation in alloy composition of PtxRu100?x/C NPs on their alloying extent (structure) and subsequently their catalytic activity towards the methanol oxidation reaction (MOR). The alloying extent of these PtxRu100?x/C NPs has a strong influence on their Pt d‐band vacancy and Pt electroactive surface area (Pt ECSA); this relationship was systematically evaluated by using X‐ray absorption (XAS), scanning electron microscopy (SEM) coupled with energy dispersive X‐ray spectroscopy (EDX), transmission electron microscopy (TEM), density functional theory (DFT) calculations, and electrochemical analyses. The MOR activity depends on two effects that act in cooperation, namely, the number of active Pt sites and their activity. Here the number of active Pt sites is associated with the Pt ECSA value, whereas the Pt‐site activity is associated with the alloying extent and Pt d‐band vacancy (electronic) effects. Among the PtxRu100?x/C NPs with various Pt:Ru atomic ratios (x=25, 50, and 75), the Pt75Ru25/C NPs were shown to be superior in MOR activity on account of their favorable alloying extent, Pt d‐band vacancy, and Pt ECSA. This short study brings new insight into probing the synergistic effect on the surface reactivity of the PtxRu100?x/C NPs, and possibly other bimetallic Pt‐based alloy NPs.  相似文献   
2.
The development of ruthenium dye-sensitizers with highly effective metal-to-ligand charge transfer (MLCT) characteristics and narrowed transition energy gaps are essential for the new generation of dye-sensitized solar cells. Here, we designed a novel anchoring ligand by inserting the cyanovinyl-branches inside the anchoring ligands of selected highly efficient dye-sensitizers and studied their intrinsic optical properties using theoretical methods. Our calculated results show that the designed ruthenium dyes provide good performances as sensitizers compared to the selected efficient dyes, because of their red-shift in the UV–visible absorption spectra with an increase in the absorption intensity, smaller energy gaps and thereby enhancing MLCT transitions. We found that, the designed anchoring ligand acts as an efficient “electron-acceptor” which boosts electron-transfer from a –NCS ligand to this ligand via a Ru-bridge, thus providing a way to lower the transition energy gap and enhance the MLCT transitions.  相似文献   
3.
Two methods were used to prepare bimetallic Pt(3)Cr(1)/C nanocatalysts with similar composition but different alloying extent (structure). We investigated how these differences in alloying extent affect the catalytic activity, stability and selectivity in the oxygen reduction reaction (ORR). One method, based on slow thermal decomposition of the Cr precursor at a rate that matches that of chemical reduction of the Pt precursor, allows fine control of the composition of the Pt(3)Cr(1)/C alloy, whereas the second approach, using the ethylene glycol method, results in considerable deviation (>25 %) from the projected composition. Consequently, these two methods lead to variations in the alloying extent that strongly influence the Pt d-band vacancy and the Pt electroactive surface area (Pt ESCA). This relationship was systematically evaluated by transmission electron microscopy, X-ray absorption near edge structure spectroscopy, and electrochemical analysis. The ORR activity depends on two effects that nullify each other, namely, the number of active Pt sites and their activity. The Pt-site activity is more dominant in governing the ORR activity. The selectivity of the nanocatalyst towards the ORR and the competitive methanol oxidation reaction (MOR) depend on these two effects acting in cooperation to give enhanced ORR activity with suppressed MOR. The number of active Pt sites is associated with the Pt ESCA value, while Pt-site activity is associated with the alloying extent and Pt d-band vacancy (electronic) effects. The presence of Cr atoms in Pt(3)Cr(1)/C enhances stability during electrochemical treatment. Overall, the Pt(3)Cr(1)/C catalyst prepared by controlled-composition synthesis was shown to be superior in ORR activity, selectivity and stability owing to its favorable alloying extent, Pt d-band vacancy, and Pt ESCA.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号