首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
化学   1篇
  1995年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
The dual fluorescence emission of the pyrylium ion 3 and of the partly blocked 4 has been studied extensively under various conditions. The short-wavelength emitting species N* of 3 is short-lived (≤200 ps at room temperature) while the long-wavelength emitting species A* is long-lived (>3 ns, except in acetic acid). This long-wavelength fluorescence undergoes an important solvatochromic shift and the difference Δ between the absorption and fluorescence maxima versus Lippert’s solvent polarity function Δf is linear. Increasing the viscosity of the medium, or decreasing the temperature, decreases the long-wavelength emission quantum yield while that of the short-wavelength fluorescence and its lifetime (from <100 ps to >4 ns) both increase, indicating that A* is formed from N*. Introducing an ortho methyl group on the paraanisyl substituent (compound 4) blocks its rotation and reduces the fluorescence IA./IN. ratio, but it does not suppress completely the long-wavelength emission. This favors a ground state configuration where the phenyl substituent would be orthogonal to the xanthylium moiety. A strong interaction of 3 and 4 with aliphatic nitriles is characterized from the quenching of the fluorescence emission (with rate constants of ca. 2×108 M−1 s−1). A static quenching process also occurs indicating a ground state interaction with the solvent. In pure aliphatic nitriles, this interaction is the main deactivation pathway of the singlet excited state, and practically no fluorescence nor triplet formation can be observed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号