首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   1篇
化学   5篇
数学   1篇
  2023年   2篇
  2022年   1篇
  2020年   1篇
  2002年   1篇
  1999年   1篇
排序方式: 共有6条查询结果,搜索用时 93 毫秒
1
1.
Cellulose-binding domains have been isolated from various cellulases, and proteins, which lack hydrolytic activity. The hypothesis that a cellulose-binding domain can be used to alter surface and mechanical properties of paper was tested. Two cellulose-binding domains from Clostriium cellulovorans were fused to form a cellulose crosslinking protein (CCP). The recombinant bifunctional cellulose-binding protein was expressed in E. coli, appliedby immersion onto Whatman cellulose filter paper, and its mechanical properties were tested. The purified protein improved the treated paper's mechanical properties (tensile strength, brittleness, Young's modulus and energy to break). In addition, cellulose crosslinking protein treatment was shown to transform filter paper into a more water-repellent paper. The binding of cellulose-binding domains to cellulose under a wide range of envi-ronmentalconditions, without the need for chemical reactions, and its biodegradability make them attractive moieties for the design of a new class of paper-modification materials.p>  相似文献   
2.
We study the ideal structure of a class of some analytic crossed products. For an -discrete, principal, minimal groupoid , we consider the analytic crossed product , where is given by a cocycle . We show that the maximal ideal space of depends on the asymptotic range of , ; that is, is homeomorphic to for finite, and consists of the unique maximal ideal for . We also prove that is semisimple in both cases, and that is invariant under isometric isomorphism.

  相似文献   

3.
Journal of Solid State Electrochemistry - Since their discovery in 2011, MXenes are extensively studied as materials for electrochemical energy storage systems. The high electric conductivity, 2D...  相似文献   
4.
The introduction of the water-in-salt (WIS) electrolytes concept to prevent water splitting and widen the electrochemical stability window, has spurred extensive research efforts toward development of improved aqueous batteries. The successful implementation of these electrolyte solutions in many electrochemical systems shifts the focus from diluted to WIS electrolyte solutions. Considering the high costs and the tendency of these nearly saturated solutions to crystallize, this trend can be carefully re-evaluated. Herein we show that the stability of organic electrodes comprising the active material perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), is strongly influenced by the solvation character of the anions rather than the concentration of the electrolyte solution. Even though the charging process of PTCDA involves solely insertion of cations (i.e., principal counter-ions), surprisingly, the dominant factor influencing its electrochemical performance, including long-term electrode stability, is the type of the co-ions (i.e., electrolytic anions). Using systematic electrochemical analysis combined with theoretical simulations, we show that the selection of kosmotropic anions results in fast fading of the PTCDA anodes, while a selection of chaotropic anions leads to excellent stability, even at electrolytes concentrations as low as 0.2 M. These findings provide a new conceptual approach for designing advanced electrolyte solutions for aqueous batteries.  相似文献   
5.
6.
The exploration of cathode and anode materials that enable reversible storage of mono and multivalent cations has driven extensive research on organic compounds. In this regard, polyimide (PI)-based electrodes have emerged as a promising avenue for the development of post-lithium energy storage systems. This review article provides a comprehensive summary of the syntheses, characterizations, and applications of PI compounds as electrode materials capable of hosting a wide range of cations. Furthermore, the review also delves into the advancements in PI based solid state batteries, PI-based separators, current collectors, and their effectiveness as polymeric binders. By highlighting the key findings in these areas, this review aims at contributing to the understanding and advancement of PI-based structures paving the way for the next generation of energy storage systems.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号