首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
化学   14篇
力学   1篇
物理学   2篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
Weak forces can play an essential role in chemical reactions. Controlling such subtle forces in reorganization processes by applying thermal or chemical stimuli represents a novel synthetic strategy and one of the main targets in supramolecular chemistry. Actually, to separate the different supramolecular contributions to the stability of the 3D assemblies is still a major challenge. Therefore, a clear differentiation of these contributions would help in understanding the intrinsic nature as well as the chemical reactivity of supramolecular ensembles. In the present work, a controlled reorganization of an hexakis[60]fullerene-based molecular compound purely governed by the weakest van der Waals interactions known, i.e. the dihydrogen interaction – usually called sticky fingers – is illustrated. This pre-reorganization of the hexakis[60]fullerene under mild conditions allows a further selective hydrogenation of the crystalline material via hydrazine vapors exposure. This unique two-step transformation process is monitored by single-crystal to single-crystal diffraction (SCSC) which allows the direct observation of the molecular movements in the lattice and the subsequent solid–gas hydrogenation reaction.

Weak forces play an essential role in chemistry. Controlling these supramolecular interactions will contribute to the creation dynamic absorbent materials with a variety of technological applications as chemosensors and environmental remediation.  相似文献   
2.
The first stage of the drug discovery process involves the identification of small compounds with biological activity. Iboga alkaloids are monoterpene indole alkaloids (MIAs) containing a fused isoquinuclidine-tetrahydroazepine ring. Both the natural products and the iboga-inspired synthetic analogs have shown a wide variety of biological activities. Herein, we describe the chemoenzymatic preparation of a small library of novel N-indolylethyl-substituted isoquinuclidines as iboga-inspired compounds, using toluene as a starting material and an imine Diels–Alder reaction as the key step in the synthesis. The new iboga series was investigated for its potential to promote the release of glial cell line-derived neurotrophic factor (GDNF) by C6 glioma cells, and to inhibit the growth of infective trypanosomes. GDNF is a neurotrophic factor widely recognized by its crucial role in development, survival, maintenance, and protection of dopaminergic neuronal circuitries affected in several neurological and psychiatric pathologies. Four compounds of the series showed promising activity as GDNF releasers, and a leading structure (compound 11) was identified for further studies. The same four compounds impaired the growth of bloodstream Trypanosoma brucei brucei (EC50 1–8 μM) and two of them (compounds 6 and 14) showed a good selectivity index.  相似文献   
3.
Orthogonally diprotected l-glyceraldehyde was efficiently prepared from readily available starting materials, allowing to obtain a highly stable and synthetically versatile chiral building block compared to known symmetrically protected derivatives.  相似文献   
4.
Cationic nitrile complexes and neutral halide and cyanide complexes, with the general formula [MnL1L2(NO)(eta-C5H4Me)]z, undergo one-electron oxidation at a Pt electrode in CH2Cl2. Linear plots of oxidation potential, Eo', vs. nu(NO) or the Lever parameters, EL, for L1 and L2, allow Eo' to be estimated for unknown analogues. In the presence of TlPF6, [MnIL'(NO)(eta-C5H4Me)] reacts with [Mn(CN)L(NO)(eta-C5H4Me)] to give [(eta5-C5H4Me)(ON)LMn(mu-CN)MnL'(NO)(eta5-C5H4Me)][PF6] which undergoes two reversible one-electron oxidations; DeltaE, the difference between the potentials for the two processes, differs significantly for stable cyanide-bridged linkage isomers. Novel pentametallic complexes such as [Mn[(mu-NC)Mn(CNBut)(NO)(eta5-C5H4Me)]4(OEt2)][PF6]2 and [Mn[(mu-NC)Mn(CNXyl)(NO)(eta5-C5H4Me)]4(NO3-O,O')][PF6], containing a trigonal bipyramidal and a distorted octahedral Mn(II) centre, respectively, result either from slow decomposition of the binuclear cyanide-bridged species or from the reaction of anhydrous MnI2 with four equivalents of [Mn(CN)L(NO)(eta5-C5H4Me)] in the presence of TlPF6.  相似文献   
5.
Recently, the real contact area and the compliance and electrical resistance for a rough surface defined with a Weierstrass series have been studied under the assumption that superposed self-affine sine waves had well separated wavelengths, extending the celebrated procedures pioneered by Archard [Archard, J.F., 1957. Elastic deformation and the laws of friction. Proc. R. Soc. Lond. A 243, 190–205]. Here, more realistic fractal rough surface profiles are considered, by using the Weierstrass series with random phases, and with much lower separation of the various scales, using a full or a hybrid numerical/analytical technique. A non-linear layer algorithm is developed which is a very efficient approximate tool to study this problem, avoiding the need for averaging over various realizations of profiles with random phases. The multiscale problem is solved by a cascade of 2-scales problems, each of which is solved with a few elements for an imposed contact area, deriving load as a function of indentation and the conductance by differentiation using Barber’s analogy theorem.Dimensionless results for the conductance as a function of applied pressures show that the conductance seems to be close to a power law at low loads, and is nearly linear at intermediate loads (following the normalized single sinusoidal case except at the origin). At high loads, the conductance becomes strongly dependent on fractal dimension because of weak dependence on the contribution of small wavelength scales (higher order terms in the series). Since roughness tends to be squeezed out, the conductance tends to increase more than linearly (more so, the smaller is the fractal dimension). However, another limit could be found in terms of the finite size of the specimen, which may suggest reaching a finite limit. The resulting curves could then be sigmoidal, as confirmed by qualitative comparisons with experiments in the literature.  相似文献   
6.
Polyaromatic hydrocarbons (PAHs) are widespread in the interstellar medium (ISM). The abundance and relevance of PAHs call for a clear understanding of their formation mechanisms, which, to date, have not been completely deciphered. Of particular interest is the formation of benzene, the basic building block of PAHs. It has been shown that the ionization of neutral clusters can lead to an intra-cluster ionic polymerization process that results in molecular growth. Ab-initio molecular dynamics (AIMD) studies in clusters consisting of 3–6 units of acetylene modeling ionization events under ISM conditions have shown maximum aggregation of three acetylene molecules forming bonded C6H6+ species; the larger the number of acetylene molecules, the higher the production of C6H6+. These results lead to the question of whether clusters larger than those studied thus far promote aggregation beyond three acetylene units and whether larger clusters can result in higher C6H6+ production. In this study, we report results from AIMD simulations modeling the ionization of 10 and 20 acetylene clusters. The simulations show aggregation of up to four acetylene units producing bonded C8H8+. Interestingly, C8H8+ bicyclic species were identified, setting a precedent for their astrochemical identification. Comparable reactivity rates were shown with 10 and 20 acetylene clusters.  相似文献   
7.
Engineering high‐recognition host–guest materials is a burgeoning area in basic and applied research. The challenge of exploring novel porous materials with advanced functionalities prompted us to develop dynamic crystalline structures promoted by soft interactions. The first example of a pure molecular dynamic crystalline framework is demonstrated, which is held together by means of weak “sticky fingers” van der Waals interactions. The presented organic‐fullerene‐based material exhibits a non‐porous dynamic crystalline structure capable of undergoing single‐crystal‐to‐single‐crystal reactions. Exposure to hydrazine vapors induces structural and chemical changes that manifest as toposelective hydrogenation of alternating rings on the surface of the [60]fullerene. Control experiments confirm that the same reaction does not occur when performed in solution. Easy‐to‐detect changes in the macroscopic properties of the sample suggest utility as molecular sensors or energy‐storage materials.  相似文献   
8.
Photodynamic therapy (PDT) is a promising alternative treatment for different types of cancer due to its high selectivity, which prevents healthy tissues from being damaged. The use of nanomaterials in PDT has several advantages over classical photosensitizing agents, due to their unique properties and their capacity for functionalization. Especially interesting is the use of metallic nanoparticles, which are capable of absorbing electromagnetic radiation and either transferring this energy to oxygen molecules for the generation of reactive oxygen species (ROS) or dissipating it as heat. Although previous reports have demonstrated the capacity of Rh derivatives to serve as anti-tumor drugs, to the best of our knowledge there have been no studies on the potential use of small-sized Rh nanoparticles as photosensitizers in PDT. In this study, 5 nm Rh nanoparticles have been synthesized and their potential in PDT has been evaluated. The results show that treatment with Rh nanoparticles followed by NIR irradiation induces apoptosis in cancer cells through a p53-independent mechanism.  相似文献   
9.
Extremely high electrophilic metal complexes, composed by a metal cation and very electron poor σ-donor ancillary ligands, are expected to be privileged catalysts for oxidation reactions in organic chemistry. However, their low lifetime prevents any use in catalysis. Here we show the synthesis of fluorinated pyridine-Pd2+ coordinate cages within the channels of an anionic tridimensional metal-organic framework (MOF), and their use as efficient metal catalysts for the aerobic oxidation of aliphatic alcohols to carboxylic acids without any additive. Mechanistic studies strongly support that the MOF-stabilized coordination cage with perfluorinated ligands unleashes the full electrophilic potential of Pd2+ to dehydrogenate primary alcohols, without any base, and also to activate O2 for the radical oxidation to the aldehyde intermediate. This study opens the door to design catalytic perfluorinated complexes for challenging organic transformations, where an extremely high electrophilic metal site is required.  相似文献   
10.
We report an accurate measurement of the recoil velocity of 87Rb atoms based on Bloch oscillations in a vertical accelerated optical lattice. We transfer about 900 recoil momenta with an efficiency of 99.97% per recoil. A set of 72 measurements of the recoil velocity, each one with a relative uncertainty of about 33 ppb in 20 min integration time, leads to a determination of the fine structure constant with a statistical relative uncertainty of 4.4 ppb. The detailed analysis of the different systematic errors yields to a relative uncertainty of 6.7 ppb. The deduced value of alpha-1 is 137.035 998 78(91).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号