首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
化学   15篇
数学   6篇
物理学   3篇
  2013年   1篇
  2011年   1篇
  2008年   2篇
  2005年   4篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  1999年   4篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
排序方式: 共有24条查询结果,搜索用时 156 毫秒
1.
Time-resolved adsorption behavior of a human immunoglobin G (hIgG) protein on a hydrophobized gold surface is investigated using multitechniques: quartz crystal microbalance/dissipation (QCM-D) technique; combined surface plasmon resonance (SPR) and Love mode surface acoustic wave (SAW) technique; combined QCM-D and atomic force microscopy (AFM) technique. The adsorbed hIgG forms interfacial structures varying in organization from a submonolayer to a multilayer. An "end-on" IgG orientation in the monolayer film, associated with the surface coverage results, does not corroborate with the effective protein thickness determined from SPR/SAW measurements. This inconsistence is interpreted by a deformation effect induced by conformation change. This conformation change is confirmed by QCM-D measurement. Combined SPR/SAW measurements suggest that the adsorbed protein barely contains water after extended contact with the hydrophobic surface. This limited interfacial hydration also contributed to a continuous conformation change in the adsorbed protein layer. The viscoelastic variation associated with interfacial conformation changes induces about 1.5 times overestimation of the mass uptake in the QCM-D measurements. The merit of combined multitechnique measurements is demonstrated.  相似文献   
2.
3.
Many membrane proteins and lipids are partially confined in substructures ranging from tens of nanometers to micrometers in size. Evidence for heterogeneities in the membrane of oligodendrocytes, i.e. the myelin-producing cells of the central nervous system, is almost exclusively based on detergent methods. However, as application of detergents can alter the membrane phase behaviour, it is important to investigate membrane heterogeneities in living cells. Here, we report on the first investigations of the diffusion behavior of the myelin-specific protein MOG (myelin oligodendrocyte glycoprotein) in OLN-93 as studied by the recently developed RICS (raster-scanning image correlation spectroscopy) technique. We implemented RICS on a standard confocal laser-scanning microscope with one-photon excitation and analog detection. Measurements on FITC-dextran were used to evaluate the performance of the system and the data analysis procedure. Ellen Gielen and Nick Smisdom contributed equally to this work.  相似文献   
4.
We discuss the dynamics of tryptophan rotamers in the context of the non-exponential fluorescence decay in proteins. The central question is: how does the ground-state conformational heterogeneity influence the time evolution of tryptophan fluorescence? This problem is examined here from the theoretical perspective. Three methods at different levels of theory, and with different scopes and computational requirements are reviewed. The Dead-end elimination method is limited to side-chain dynamics and provides an efficient way to detect the stable tryptophan rotamers in a protein. Its application to the study of heterogeneous emission characteristics is illustrated. Molecular dynamics is aimed at the full phase space of the macromolecule in solution, but must rely on classical force fields and laws of evolution. We examine to what extent the molecular mechanics paradigm yields sufficiently accurate thermodynamic results, and what are the possible kinetic implications. Finally Quantum Chemistry is the only theoretical method that allows a direct assessment of the excited states. It is necessarily restricted to small molecular systems, and thus must be used in a hybrid combination with classical methods and electrostatic models. So far understanding of the emitting state has greatly progressed as a result of these calculations, but the actual treatment of the photophysical decay processes at the quantum level has not yet really started.  相似文献   
5.
The characteristic equation of a system of delay differential equations (DDEs) is a nonlinear equation with infinitely many zeros. The stability of a steady state solution of such a DDE system is determined by the number of zeros of this equation with positive real part. We present a numerical algorithm to compute the rightmost, i.e., stability determining, zeros of the characteristic equation. The algorithm is based on the application of subspace iteration on the time integration operator of the system or its variational equations. The computed zeros provide insight into the system’s behaviour, can be used for robust bifurcation detection and for efficient indirect calculation of bifurcation points. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
6.
Fluorescence correlation spectroscopy (FCS) is a relatively recent technique in which the diffusion coefficient of fluorescently labeled molecules can be determined. The change in diffusion behavior when these molecules interact with others can also be used to study interactions in solution. A new statistical method is proposed to analyze FCS measurements that cannot be evaluated with a classical autocorrelation function, which is normally used to analyze FCS data. It applies to binding studies where one of the interacting particles has a much brighter fluorescence intensity with respect to the other, which causes high fluorescence bursts whenever these molecules are detected. This biases the autocorrelation function, making it in most cases impossible to use this function as a fitting equation. Here, a statistical approach is used to quantify the amount of fluorescence found in bursts, thereby enabling to perform binding studies in cases where the fluorescence per molecule of both interacting species differs greatly. The method is demonstrated on a system of known composition, making it a promising tool for future FCS measurements.  相似文献   
7.
Abstract— Steady-state and multifrequency phase fluorometry were used to characterize the conformational state and conformational dynamics of recombinant tick anticoagulant peptide ( Ornithodorus moubata ) (TAP). The TAP contains two tryptophan residues at positions 11 and 37. The fluorescence emission varies sigmoidally as a function of pH with a pKa of 6.01 ± 0.07. This pH dependency suggests that tryptophan fluorescence is quenched by His43 at low pH. This is confirmed by modification of the his-tidine with diethylpyrocarbonate. At pH 9 the fluorescence decay is well described by a sum of three exponentials (0.52,1.9 and 5.4 ns), which decrease all three at pH 4 (0.25, 1.61 and 4.4 ns). From the reactivity of the fluorescence lifetimes toward N -bromosuccinimide and from the calculation of the accessibility we can attribute the long lifetime to Trpll, the short one to Trp37 and the middle one to both. The anisotropy decay was resolved into two components of 3.85 ns and 0.27 ns at pH 4 and 4.5 ns and 0.6 ns at pH 9. The long anisotropy decay time corresponds to the rotational correlation time of the protein, the short one to local mobility of the tryptophan residues.  相似文献   
8.
Protein resistant surfaces based on poly(ethylene glycol) (PEG) coatings are extensively applied in the fields of biosensors, tissue engineering, fundamental cell-surface interaction research, and drug delivery systems. The structural organization of the PEG film on the surface has a significant effect on the performance of the film to resist protein adsorption. In this paper, we report an approach using solvent to control the organization of the polymeric monolayer on gold. A water soluble copolymer with grafted PEG side chains and alkyl disulfide side chains was synthesized. A polymeric monolayer was fabricated on a gold surface from different solutions (water- and toluene-based) of the copolymer. The organization of the polymeric monolayers was characterized by means of ellipsometry, cyclic voltammetry, contact angle, X-ray photoelectron spectroscopy, and atomic force microscopy. It was proven that the structural organization of the polymeric monolayer on a gold surface could be controlled by the solvent. A polymeric monolayer with PEG enriched at the outer level is obtained when water is used as the solvent. Various types of proteins, including fibrinogen, albumin, and normal human serum, were used to test the protein resistance of the gold surfaces modified by the polymeric monolayers. The polymeric monolayer formed from a water solution of the copolymer showed excellent protein resistance. In addition, by using water as the solvent, patterning of the polymeric monolayer could easily be achieved through a combination of lift-off and self-assembly. We believe that the approach reported here provides an easy, fast, and efficient way to fabricate a robust protein resistant surface.  相似文献   
9.
10.
Summary. We prove numerical stability of a class of piecewise polynomial collocation methods on nonuniform meshes for computing asymptotically stable and unstable periodic solutions of the linear delay differential equation by a (periodic) boundary value approach. This equation arises, e.g., in the study of the numerical stability of collocation methods for computing periodic solutions of nonlinear delay equations. We obtain convergence results for the standard collocation algorithm and for two variants. In particular, estimates of the difference between the collocation solution and the true solution are derived. For the standard collocation scheme the convergence results are “unconditional”, that is, they do not require mesh-ratio restrictions. Numerical results that support the theoretical findings are also given. Received June 9, 2000 / Revised version received December 14, 2000 / Published online October 17, 2001  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号