首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
化学   19篇
力学   1篇
数学   1篇
物理学   2篇
  2013年   1篇
  2012年   3篇
  2011年   4篇
  2010年   3篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  1974年   1篇
  1972年   1篇
  1969年   1篇
  1943年   1篇
  1926年   1篇
排序方式: 共有23条查询结果,搜索用时 62 毫秒
1.
2.
A combinatorial synthesis of oligopeptide analogues and their evaluation as protein:geranylgeranyl transferase inhibitors is presented. The combinatorial strategy is based on the random mutation, in each new generation, of one of any of the four amino acid building blocks of which the most effective compounds of the previous generation are assembled. In this way, a progressive improvement of the average inhibitory activity was observed until the fifth generation. The most active inhibitors were found to inhibit PGGT-1 in the low micromolar range (IC(50): 3.8-8.1 microM).  相似文献   
3.
4.
Electron transfer and capture mass spectra of a series of doubly charged ions that were phosphorylated pentapeptides of a tryptic type (pS,A,A,A,R) showed conspicuous differences in dissociations of charge-reduced ions. Electron transfer from both gaseous cesium atoms at 100 keV kinetic energies and fluoranthene anion radicals in an ion trap resulted in the loss of a hydrogen atom, ammonia, and backbone cleavages forming complete series of sequence z ions. Elimination of phosphoric acid was negligible. In contrast, capture of low-energy electrons by doubly charged ions in a Penning ion trap induced loss of a hydrogen atom followed by elimination of phosphoric acid as the dominant dissociation channel. Backbone dissociations of charge-reduced ions also occurred but were accompanied by extensive fragmentation of the primary products. z-Ions that were terminated with a deaminated phosphoserine radical competitively eliminated phosphoric acid and H2PO4 radicals. A mechanism is proposed for this novel dissociation on the basis of a computational analysis of reaction pathways and transition states. Electronic structure theory calculations in combination with extensive molecular dynamics mapping of the potential energy surface provided structures for the precursor phosphopeptide dications. Electron attachment produces a multitude of low lying electronic states in charge-reduced ions that determine their reactivity in backbone dissociations and H- atom loss. The predominant loss of H atoms in ECD is explained by a distortion of the Rydberg orbital space by the strong dipolar field of the peptide dication framework. The dipolar field steers the incoming electron to preferentially attach to the positively charged arginine side chain to form guanidinium radicals and trigger their dissociations.  相似文献   
5.
The loss of C(2)H(2) is a low activation energy dissociation channel for anthracene (C(14)H(10)) and acridine (C(13)H(9)N) cations. For the latter ion another prominent fragmentation pathway is the loss of HCN. We have studied these two dissociation channels by collision induced dissociation experiments of 50 keV anthracene cations and protonated acridine, both produced by electrospray ionization, in collisions with a neutral xenon target. In addition, we have carried out density functional theory calculations on possible reaction pathways for the loss of C(2)H(2) and HCN. The mass spectra display features of multi-step processes, and for protonated acridine the dominant first step process is the loss of a hydrogen from the N site, which then leads to C(2)H(2)/HCN loss from the acridine cation. With our calculations we have identified three pathways for the loss of C(2)H(2) from the anthracene cation, with three different cationic products: 2-ethynylnaphthalene, biphenylene, and acenaphthylene. The third product is the one with the overall lowest dissociation energy barrier. For the acridine cation our calculated pathway for the loss of C(2)H(2) leads to the 3-ethynylquinoline cation, and the loss of HCN leads to the biphenylene cation. Isomerization plays an important role in the formation of the non-ethynyl containing products. All calculated fragmentation pathways should be accessible in the present experiment due to substantial energy deposition in the collisions.  相似文献   
6.
The template-induced formation of chelating bidentate ligands by the selective self-assembly of two monodentate pyridyl phosphorus ligands on a rigid bis-zinc(II) salphen template with two identical binding sites was studied. Using UV-vis, NMR-spectroscopy and X-ray analysis the formed structures were unambiguously proven. The application of these templated bidentate ligands in transition metal catalysis showed, in most cases, typical bidentate character. Compared to previous work based on a more flexible bis-zinc(II) porphyrin template, the current catalytic data suggest that the rigidity of the template is not an important factor for the improvement of the regio- and enantioselectivity under the applied reaction conditions.  相似文献   
7.
The mass spectrometric behaviour of the 1,3-diaminopropane derivative 4a (3,7-diacetyl-3,7-diazadodecane) was investigated with regard to the fragmentation reactions of N, N′, N″-triacetylspermidine ( 1 ), as model for the 1,3-diaminopropane part. It was established that the degradation reactions in 4a and 1 are essentially the same and mainly due to the interaction of two N-acetyl groups. Thereby it is established that the most important mass spectrometric fragmentation reactions of spermidine derivatives take place within the 1,3-diaminopropane unit and are independent of the influence of further N-atoms in the molecule. An ion (m/e 143) was found in the fragmentation pattern of N, N′, N″-triacetylspermidine whose formation can be explained by interaction of all three N-acetyl groups. The corresponding ion was not found, in the spectrum of 4a , with only two N-acetyl groups, thereby confirming the earlier hypothesis.  相似文献   
8.
Ohne Zusammenfassung Vorgelegt von L. Collatz  相似文献   
9.
Weakly bound complexes between ferric heme cations and NO were synthesised in the gas phase from ion–molecule reactions, and their absorption measured based on photodissociation yields. The Soret band, which serves as an important marker band for heme‐protein spectroscopy, is maximal at 357±5 nm and significantly blue‐shifted compared to ferric heme nitrosyl proteins (maxima between 408 and 422 nm). This is in stark contrast to the Q‐band absorption where the protein microenvironment is nearly innocent in perturbing the electronic structure of the porphyrin macrocycle. Photodissociation is primarily through loss of NO. In contrast to the Q‐band region, two‐photon absorption was seen in the Soret band despite NO loss only requiring ~1 eV. A model based on intersystem crossing to a long‐lived triplet state where a barrier has to be surmounted is suggested. Finally, we summarise the measured absorption maxima of heme and its complexes with amino acids and NO.  相似文献   
10.
The mass spectral fragmentation of dimethyl glutamate ( 1 ) and its deuterated derivatives 1a , 1b and 1c has been investigated. By loss of a methoxycarbonyl group from the molecular ion an ion of m/e 116 is generated. The latter splits off methanol (m*), the resulting fragment of m/e 84 giving raise to the base peak of the spectrum. Only part of the hydrogen transferred to the leaving group originates from thc amino group, as was suggested earlier [2] [3]. Basing on experiments with deuterated compounds we propose an additional mechanism for the reaction, i.e. hydrogen transfer from C(3) to methoxyl. The fragment generated by both processes is most likely to be a pyrrolinonium ion. Thermal side reactions in the mass spectrometer (formation of pyroglutamic acid ester) followed by fragmentation may lead to the same ion. – The mechanisms discussed are supported by the mass spectral fragmentation of N-acetyl-glutamic acid diesters 3 , 3a , 3b and 3d and of the N, N-dimethyl derivatives 4 and 4a . – The fragmentation reactions investigated are similar to some of 1,3-trimethylenediamine derivatives [7]. This means that there are parallels in the mass spectral fragmentation of difunctional compounds irrespective of the nature of the functional groups.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号