首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
化学   3篇
物理学   2篇
  2011年   1篇
  2009年   1篇
  2007年   1篇
  2005年   1篇
  1996年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
Oocyte cryopreservation has become an essential tool in the treatment of infertility by preserving oocytes for women undergoing chemotherapy. However, despite recent advances, pregnancy rates from all cryopreserved oocytes remain low. The inevitable use of the cryoprotectants (CPAs) during preservation affects the viability of the preserved oocytes and pregnancy rates either through CPA toxicity or osmotic injury. Current protocols attempt to reduce CPA toxicity by minimizing CPA concentrations, or by minimizing the volume changes via the step-wise addition of CPAs to the cells. Although the step-wise addition decreases osmotic shock to oocytes, it unfortunately increases toxic injuries due to the long exposure times to CPAs. To address limitations of current protocols and to rationally design protocols that minimize the exposure to CPAs, we developed a microfluidic device for the quantitative measurements of oocyte volume during various CPA loading protocols. We spatially secured a single oocyte on the microfluidic device, created precisely controlled continuous CPA profiles (step-wise, linear and complex) for the addition of CPAs to the oocyte and measured the oocyte volumetric response to each profile. With both linear and complex profiles, we were able to load 1.5 M propanediol to oocytes in less than 15 min and with a volumetric change of less than 10%. Thus, we believe this single oocyte analysis technology will eventually help future advances in assisted reproductive technologies and fertility preservation.  相似文献   
2.
3.
The osmotic virial equation was used to predict osmolalities of solutions of interest in biology. The second osmotic virial coefficients, Bi, account for the interactions between identical solute molecules. For multisolute solutions, the second osmotic virial cross coefficient, Bij, describes the interaction between two different solutes. We propose to use as a mixing rule for the cross coefficient the arithmetic average of the second osmotic virial coefficients of the pure species, so that only binary solution measurements are required for multisolute solution predictions. Single-solute data were fit to obtain the osmotic virial coefficients of the pure species. Using those coefficients with the proposed mixing rule, predictions were made of ternary solution osmolality, without any fitting parameters. This method is shown to make reasonably accurate predictions for three very different ternary aqueous solutions: (i) glycerol + dimethyl sulfoxide + water, (ii) hemoglobin + an ideal, dilute solute + water, and (iii) bovine serum albumin + ovalbumin + water.  相似文献   
4.
This paper shows the evolution of density and temperature of multi-charged ions in an electron beam ion trap (EBIT). Three cases are studied: the continuous neutral gas injection, ion source injection, and evaporative cooling. The effects of the neutral gas density, axial potential, and the beam current density on the ions evolution are discussed.  相似文献   
5.
An understanding of the kinetics of the osmotic response of cells is important in understanding permeability properties of cell membranes and predicting cell responses during exposure to anisotonic conditions. Traditionally, a mathematical model of cell osmotic response is obtained by applying mass transport and Boyle-vant Hoff equations using numerical methods. In the usual application of these equations, it is assumed that all cells are the same size equal to the mean or mode of the population. However, biological cells (even if they had identical membranes and hence identical permeability characteristics--which they do not) have a distribution in cell size and will therefore shrink or swell at different rates when exposed to anisotonic conditions. A population of cells may therefore exhibit a different average osmotic response than that of a single cell. In this study, a mathematical model using mass transport and Boyle-van't Hoff equations was applied to measured size distributions of cells. Chinese hamster fibroblast cells (V-79W) and Madin-Darby canine kidney cells (MDCK), were placed in hypertonic solutions and the kinetics of cell shrinkage were monitored. Consistent with the theoretical predictions, the size distributions of these cells were found to change over time, therefore the selection of the measure of central tendency for the population may affect the calculated osmotic parameters. After examining three different average volumes (mean, median, and mode) using four different theoretical cell size distributions, it was determined that, for the assumptions used in this study, the mean or median were the best measures of central tendency to describe osmotic volume changes in cell suspensions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号